
Image and Graphic Tools For Engineering Applications

Carl R. Crawford

Csuptwo, LLC

8900 N. Bayside Drive
Bayside, WI 53217-1911
Office/Fax: 414-446-4566

crawford.carl@csuptwo.com
www.csuptwo.com

Printed, September 14, 2011

Contributors

Mani Azimi
Ibrahim Bechwati

Owen Dake
Paul Granfors

Muzaffer Hiraoglu
Matt Hirsch
Jim Kohli

Greg Larson
Hara Levy

David Rozas
Chris Ruth

Malcolm Slaney

-ii-

Table of Contents

Table of contents . ii
crc - Introduction . 1
Programs . 7

anmi . 7
armi . 8
asda . 9
cda . 10
cmi . 11
cplot . 12
daas . 17
dami . 18
dft . 19
exda . 20
fmm . 21
lc . 22
mag . 23
minda . 24
plot3d . 25
plotps . 30
qplot . 31
sagcor . 35
xpc . 36
xpic . 37
xplot . 60

Support library - parse.a . 63
parse - introduction . 63
parse_accept . 67
parse_atof . 69
parse_buffer . 70
parse_da . 71
parse_check . 73
parse_da . 74
parse_disk . 76
parse_fft . 78
parse_malloc . 79
parse_mi . 80
parse_parse . 84
parse_print . 94
parse_string . 97

Graphics primitives library - crcplot.a 99
crcplot - introduction . 99
axis . 104
clear . 105
cplot . 106
curve . 108
dline . 109
factor . 110
grid . 111
hardcopy . 112
hatch . 113

-iii-

line . 114
where . 115
number . 116
plot . 117
plotcrc . 118
plot3d . 121
plots . 124
scale . 126
symbol . 127
where . 129

Graphics examples - example . 130
ex1.c . 131
ex2.c . 132
ex3.c . 133
ex4.c . 134
ex5.c . 135
ex6.c . 136
ex7.c . 137
ex8.c . 138
ex9.c . 139
ex10.c . 140
ex11.c . 141
ex12.c . 142
ex13.c . 143
ex14.c . 144

Symbol routine character definitions 145

CRC(1) CRC(1)

NAME
crc - package of image, plotting and parsing tools

DESCRIPTION
This package of software includes tools for displaying images, plotting scientific data, parsing the com-
mand line passed to C programs,. The name of the package, crc, corresponds to the initials of the author of
the software. The following programs and libraries are available:

anmi Annotates mi-files.

armi Archiver of mi-files.

asda Converts ASCII files to da-files.

cda Combines da-files.

cmi Combines mi-files.

daas Converts da-files to ASCII files.

dami Converts da-files to mi-files.

dft Takes the DFT (discrete Fourier transform) of da-files.

exda Extracts records from da-files.

fmm Finds maximum and minimum in da-files.

lmmi Converts lm-files to mi-files.

mag Magnifies (2X) mi-files.

minda Minifies da-files.

sagcor Generates sagittal, coronal, and projection images from mi-files.

xpic Displays images in X11 window.

lc Extracts lines/columns from xpic(1).

cplot Contour plotter.

plot3d Three-dimensional plotter of elevation data.

plotps Converts plot(5) format to Postscript.

qplot Quickly plots vectors.

xpc Controls xplot(1) windows.

xplot Displays plot(5) commands in X11 window.

[lib]crcplot.a
Graphics library.

[lib]parse.a
C support library. Reads and writes da-files and mi-files. Parses command line.

PHILOSOPHY
This package of tools is optimized for scientific and engineering applications. Principle tools are used for
image display and for graphics. Other tools are available for developing C programs, generating common
image and data formats, and converting to and from the common formats. Note, all image and graphics dis-
plays are separated from the scientific or engineering application. Application programs communicate to
the displays using standardized image and vector formats. Additionally, the operating system is hidden
from user via calls to a support library. Using these tools, the scientist or engineer can concentrate on
development instead of on graphics, image display, and the operating system. Following are descriptions of
the key tools.

xpic displays images in the X11 windowing environment. Sixteen bit images are displayed in a user-speci-
fied region of a canvas. The program is optimized for an format called mi- files. Support for this format is
provided in a support library. Window/level functionality, from 16 to 8 bits, is provided via sliders.

9 February 2008 1

CRC(1) CRC(1)

Commands are entered in a TTY window. Images can be annotated with text or cursors. The canvas can be
converted to PostScript or sent to a laser camera. Some simple image processing - offset, scale, and region-
of-interest analysis - is available. Complex image processing is not available with the program because it
would violate the philosophy used for the package. Applications that require interactive use of an image
display can use a library of functions that communicate with the program using inter-process communica-
tion. In particular, shared-memory access is available to the 16 bit image memory.

xplot displays Unix plot commands in the X11 windowing environment. It listens for these commands
through inter-process communication. A library of functions is provided to draw complex graphical objects
like axes, grids, and text using the plot format. The library also has functionality to connect the application
program to xplot. The programs qplot, plot3d, and cplot use the library to plot vectors (x versus y), eleva-
tion maps, and contour plots, respectively, from data contained in common formats. The preferred format
is another format called da- files. Support for this format is also provided in the support library. Therefore,
the user can either embed the graphics in an application using library calls or write data to external files and
use the three plotters for subsequent visualization.

parse.a is the support library. In addition to handling da- and mi- files, functions are provided for passing
parameters on the command line and for hiding specifics of Unix. The latter feature is useful for migrating
applications to different platforms. Error detection and reporting is built into all the functions.

INSTALLATION
The code is distributed in either crc.tar or crc.tar.Z. If necessary, uncompress the latter file using uncom-
press(1). Unwrap the code using tar(1) and make the code by running make(1) in the directory ./crc.
Some editing of the Makefile might be necessary to reflect your environment. Read the file crc/README
for additional installation details. By default, the Makefile is setup for Linux. Compilations for Solaris are
also supported by uncommenting and commenting a few lines of the Makefile.

SUPPORT
Please report all bugs and comments to the author listed below. If you would like to receive updates and
status reports on the code please let the author know through electronic mail and you will be added to a dis-
tribution list.

COMMAND LINE PARSING
The programs in this package share a common parser to extract options from the command line. The pur-
pose of this section is to provide a detailed description of the operation of the parser. This section is orga-
nized as follows. First, an overview of the parser is presented. Then, each of the basic parts of the parser
are described in detail. For additional information on the incorporation of the parser in a program, the
reader is referred to parse_parse(3).

Programs using the parser adhere to the Unix philosophy that the program will do something useful when
invoked without specifying any options on the command line. For the sake of discussion, consider a pro-
gram named prog. The following line invokes the program without any specified options

% prog

where percent (%) is the default prompt from the Unix shell. In response to this command, the program
might read information from a file or the terminal and probably output information to a file or on the termi-
nal.

The parser processes two types of objects: flags and options. Flags are the individual characters following a
minus (-) sign. Examples of flags are -a and -abc, where each of the letters are individual flags. In this
case, -a, -b, and -c, are the flags. Options are words, followed by an equals sign, and then followed by a
value. Examples of options include infile=filename and weight=10, where infile and weight are the option
names, and filename and 10 are the values of the options. For example, the program prog could be
invoked with options and flags as follows

% prog infile=input_file -a -bc weight=10

where the input would be taken from the file input_file, a weight of 10 would be applied instead of a default
weight, and program modes associated with -a, -b and -c would be used.

The parser also allows the specification of flags and options in initialization files and in environment

2 9 February 2008

CRC(1) CRC(1)

variables. The names of the files and the variables are program dependent. For the sake of discussion,
assume that the sample program prog uses the file .prog and the environment variable PROG. Please refer
to the documentation for your specific shell to determine how to set environment variables. The program
prog examines .prog in the user’s HOME directory, and then the program examines .prog in the current
working directory, if it is not the HOME directory. Next, the program examines the variable PROG.
Finally, the command line is examined. The contents of .prog might be

-a weight=10
-b

and PROG might be

-c infile=results

Now consider the execution of the program without any options or flags as in

% prog

Because of the existence of .prog and PROG, the command line execution of the program is equivalent to

% prog -a weight=10 -b -c infile=results

Specification of the flag -@ disables the use of initialization files and environment variables.

The formal definition of a flag is a string beginning with a minus sign (-) and followed by a set of charac-
ters. Each of the characters following the minus sign are known as flags. At least one flag must be present
after the minus sign. The parser maintains a list of valid flags and actions to take when a flag is encoun-
tered. In all cases, flags consist of only one character. Typically, a variable is set to one when the flag is
present on the command line. The string of flags usually consists of upper- and lower-case letters. How-
ev er, other characters or numbers can be used. Be aware that some characters (for example, the question
mark) might have to be escaped to prevent interpretation by a shell using backslashes or quotation marks.
The question mark, when it is part of a flag, signifies that help is requested (more information is provided
below on its use). Examples of valid flags are

-a
-Bcd
-?

The grammar is set up so that flags are processed from left to right on the command line. Therefore,

% prog -ab

is equivalent to

% prog -a -b

The effect of some flags can be negated, where negation means that flag will be effectively unset. When a
minus sign (-) is encountered in a list of flags, all flags afterwards will be negated. When a plus sign (+) is
encountered, negation is turned off. In the example

% prog --bc

the flags -b and -c are unset (i.e., negated). In the following example

% prog -a-bc+de

the flags -a, -d and -e are set and flags -b and -c are unset.

If an illegal flag is specified, then the following error message is displayed and the program halts execution

bad flag: -k

where k is the illegal flag.

As mentioned above, the flag -@ disables the use of initialization files and environment variables.

An option has the form name=value, where name is the name the of the option and value is a number or
string to be assigned to name. The parser maintains a list of options and actions to take if the option is
present on the command line. Typically, a value is assigned to a variable, or a string is copied to a buffer.

9 February 2008 3

CRC(1) CRC(1)

A common use of options is to specify the names of input and output files. The parser allows the name and
value fields to be two separate words with the equals sign (=) still attached to the name as in the following
example

% prog infile= ../tmp/junk.txt

This functionality is provided so that filename completion can be used with the shell. A single question
mark, ?, or a question mark with an equals sign, ?=, indicates that help is requested (more details below).

Options can be abbreviated to the fewest number of characters that will not cause ambiguity in the parser.
Consider a program that has options xoffset, yoffset, of, and offset. Then, the options x and xo are equiva-
lent to using xoffset. If o was used on the command line, then the parser would report the following error:

Abbreviation, o, matches: of offset

The parser does not report an error in the case if of because of matches the complete spelling of an option.

If an illegal option is specified, then the following error message is displayed and the program halts execu-
tion

Illegal option: name

where name is the illegal option. If the value for an option is missing, then the following error message is
printed

empty string or no next arg: option

Many of the programs allow one option to be specified without using its name or an equals sign. This
mode is useful when one value is almost always specified on the command line. An example is the plotting
program qplot(1) which has the option y to specify a vector to plot. To plot the vector data.da, either of
the following can be used

% qplot y=data.da
% qplot data.da

Some options, specifically text fields, can contain spaces and other characters that are trapped by the shell.
In these cases, the value given to the option should be protected using quotation marks. For example, qplot
uses the option yl to specify the label below the y-axis. A label with spaces and asterisks would be speci-
fied as follows

% qplot yl="***label with spaces and asterisks***"

Options that receive numeric arguments can be passed an arithmetic expression. The expression can con-
tain numbers, including those in exponential format (i.e., those with ’e’ or ’E’), ’+’ for addition, ’-’ for sub-
traction or unary minus, ’*’ for multiplication, and ’/’ for division. The priority convention for the opera-
tions is the same as C or Fortran, and can be changed with the use of parentheses. Note that no spaces can
be in the expression and the use of quotes might be required to protect the expression from the shell. Com-
plete details on expressions can be found in the documentation for parse_atof(3). Examples of the use
expressions include the following

% prog weight=10+20
% prog weight="1e2+20"
% prog weight="1e2+20"
% prog weight="(8+2)*(30+10)/2"

where weight is assigned a value of 30 in all four cases.

Command line arguments can be placed in an initialization file. The name of the file is unique to each pro-
gram. The file in the user’s HOME directory is first examined, if it exists. If the current working directory
is not the HOME directory and the file exists in the current working directory, then the file is examined in
the current working directory. Command line arguments are read from the files as if they were present on
the command line. Arguments are read until the end-of-file or until a line beginning with // is encountered.
Lines beginning with a sharp (#) are comments. Any text after a sharp, including the sharp itself, is also a
comment and is stripped off. An arbitrary number of arguments can appear on the same line. By conven-
tion, the name of the initialization file is the name of the program with a period (.) prefixed and perhaps

4 9 February 2008

CRC(1) CRC(1)

with the suffix rc appended. A sample initialization file for the program xpic(1) is as follows

.xpic - startup file for xpic
-a # don’t allow xpic_attach
-p # enable port access
#-o # disable options panel
window=300 # default window
level=0 # default level
commands after // are "entered" at xpic prompt
//
file pic.mi,slick.mi # load pic and slick side-by-side

Options and flags can also be specified in environment variables. The mechanism to set these variables is
specific to each shell. For example, the variable PROG for the sample program prog can be set for the
Bash shell using

% export PROG="weight=10 -a"

Initialization files are examined first. Then the environment variable is parsed. Finally, the command line
is processed. The flag -@ disables the use of initialization files and environment variables.

The command line is parsed from left to right. For the sake of this discussion, it is assumed that parameters
in files and in the environment are part of the command line. In general, the parser uses the last value of an
option or the mode specified by a set of flags. Consider the following case with options

% prog weight=10 weight=20

Then the value 20 is used in the program. Now assume that flags -a and -b enables modes "a" and "b",
respectively, where the modes are opposites of each other (i.e., only one of the two modes can be active in
any giv en inv ocation of the program). Then

% prog -a -b -a -a -b

invokes mode "b". The use of multiple specifications is useful to override parameters in files or the envi-
ronment, or in conjunction with the history mechanism of most Unix shells. Note that flags and options can
be mixed on the command line as in the following example

% prog -a weight=3.14159 -c

The parser allows the automatic setting, which is called side effects, of an option when a flag is set or a flag
when an option is set. The biggest use of side effects is to automatically set program modes associated with
certain options. For example, assume that the program has the two modes of operation "a" and "b," which
are associated with the flags -a and -b. Also assume that mode "b" uses an option bfac= The brute force
way to inv oke the program in the "b" mode with a specified value of bfac is

% prog -b bfac=10

Since bfac is used only with the "b" mode, the program automatically invokes the -b flag. Therefore, the
following command line is equivalent to the previous line

% prog bfac=10

When command lines are parsed, the user has to be aware of side effects that might have to be overridden.

A program’s command line syntax is written to the user’s terminal if one of the following flags or options is
present on the command line: -?, ?= or ?. Be aware that the question mark might have to be escaped to pre-
vent interpretation by a shell using backslashes or quotation marks. The parser lists valid flags and options.
In the case of options, the default value of the option is presented. The option (empty) in the help screen is
the option that can be invoked without an equals sign. Here is the help screen for cda(1)

-p: don’t print program information
-P: prompt for parameters
-a: add vectors
-s: subtract vectors (default)
-m: multiply vectors

9 February 2008 5

CRC(1) CRC(1)

-d: divide vectors
i1=y1.da: first input file
i2=y2.da: second input file
of=y.da: output file
w1=1.000000: weight for first vector
w2=1.000000: weight for second vector
(empty) equivalent to: set files

FILES
crc.tar Uncompressed tar(1) file in which the package is distributed.

crc.tar.Z Compressed tar(1) file in which the package is distributed.

crc/Makefile Master makefile for the package.

crc/README Contains detailed notes on the installation of the package.

SEE ALSO
anmi(1), armi(1), asda(1), cda(1), cplot(1), daas(1), dami(1), exda(1), fmm(1), lc(1), lmmi(1), mag(1),
minda(1), sagcor(1), plot3d(1), plotps(1), qplot(1), xpc(1), xpic(1), xplot(1), axis(3), clear(3), crc-
plot(3), curve(3), dline(3), factor(3), grid(3), hardcopy(3), hatch(3), line(3), number(3), plot(3),
plotcrc(3), plots(3), scale(3), symbol(3), where(3), example(8), parse(3), parse_accept(3),
parse_atof(3), parse_buffer(3), parse_canonical(3), parse_check(3), parse_da(3), parse_disk(3),
parse_fft(3), parse_malloc(3), parse_mi(3), parse_parse(3), parse_print(3), parse_string(3)

AUTHOR
Carl R. Crawford

6 9 February 2008

ANMI(1) ANMI(1)

NAME
anmi - annotate mi-files

SYNOPSIS
anmi [options]

DESCRIPTION
By default, anmi adds the label "anmi" to the header of the last image contained in the mi-file named
pic.mi.

The following options are available to change the default performance of the program:

if= file[.mi] The mi-file named file[.mi] is used instead of the default file pic.mi. The suffix mi is
added if necessary.

label=text

text The specified text is used as a label. If an equals sign is present in the label, then the
label= prefix must be used. The default text is "anmi".

-l The last image is annotated. This is the default.

-f The first image is annotated.

n=n Image number n is annotated, where n=1 is the first image.

-p The program will not print out information and therefore runs silently.

SEE ALSO
parse(3), parse_mi(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1), minda(1),
mag(1)

AUTHOR
Carl R. Crawford

31 December 1996 7

ARMI(1) ARMI(1)

NAME
armi - archive mi-files

SYNOPSIS
armi c|d|r | t |x[n][v] archive[.mi] [num] file[.mi]...

DESCRIPTION
armi maintains "archives" of mi-files. This program allows the user to add, extract or delete images in an
existing mi-file. A new mi-file can be created from a set of existing mi-files. Finally, the contents of an
existing archive can be displayed. The operation of the program closely follows the program ar(1). In all
cases, the name of the resulting archive is giv en by archive[.mi]. The suffix .mi will be added if necessary.
One of the following operation modes must must specified:

c The images contained in the files file[.mi]... are combined to form a new (or created) archive. The ar-
chive will be deleted if it already exists.

r The images contained in the files file[.mi]... are appended to an existing archive. The archive will be
created if necessary. Old style mi-files cannot be used for this operation; see parse_mi(3) for addi-
tional details.

d The images specified in slots given by files... are deleted from the archive. In this mode the files are
actually numbers. The first image in an archive is number one. The images left in the archive are
renumbered. The archive is deleted if all the images are deleted.

x By default, the first image in the archive is written to the first file specified on the command line. The
second image is written to the second specified file and so forth. If the n option is present, then the
first image to be extracted is given by num instead of image one. Even though the image is extracted
from the archive and placed in a new file, it remains in the archive. The function parse_wmi(3) is
used to write the new images. Therefore, double underscores (__) can precede the new filenames to to
append the extracted images to existing mi-files.

t The contents of the archive are listed. If the v flag is specified, then additional (verbose) information
about the format of the mi-file will be supplied; see parse_mi(3) for additional details about the sup-
plied information.

FILES
armi.0x3x5x.mi Temporary file used by the d option.

SEE ALSO
armi(1), dami(1), mag(1), parse(3), parse_mi(3), xpic(1)

AUTHOR
Carl R. Crawford (ccrawford@analogic.com)

BUGS
Labels formed from input filenames will be silently truncated if they are too long.

8 29 March 2005

ASDA(1) ASDA(1)

NAME
asda - convert ASCII files to da-files

SYNOPSIS
asda [options] [file[.as]]

DESCRIPTION
By default, asda converts the numbers in ASCII format contained in the file y.as and outputs a da-file
named y.da containing the numbers. The input file consists of multiple lines. Each line can contain a maxi-
mum of two hundred values in "free format". In other words, spaces, tabs and newlines can all be used to
separate the numbers. Lines are read until and end-of-file is reached. By default, the first number on each
line is used.

The numbers read are called the y-vector. Options exist to convert a second vector, called the x-vector,
from the input file.

The following options are available to change the default performance of the program:

if= file[.as]

file[.as] Data are read from file[.as] instead of the default file y.as. The suffix as is added if
necessary.

of= file[.da] The image is written to file[.da]. The suffix da is added if necessary. The default out-
put file is the name of the input file with the suffix da added. If a suffix is already
present in the input filename, it is first deleted.

ny=col The y-vector will be read from column col instead of column one. If the nx option is
used (see below) then the column number is relative to the x-column number and col
can be negative.

nx=col A x-vector is read from column col in addition to the y-vector. The suffix _x.da is
added to the output filename to form the name of the file containing the x-vector.

count=c Read only c points from the input file. By default, all the points are read until an end-
of-file is reached.

skip=n Read only every n’th plus 1 point from the input file. The default value is zero.

begin=b Begin reading the input file at line b, where the first line in the file is line zero.

-p The program will not print out information and therefore runs silently.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1),
minda(1), mag(1)

AUTHOR
Carl R. Crawford

23 July 1998 9

CDA(1) CDA(1)

NAME
cda - combine da-files using mathematical operations

SYNOPSIS
cda [options] [file1[.da] file2[.da]]

DESCRIPTION
By default, cda subtracts the data contained in a second file y2.da from the data contained in a first file
y1.da and writes the resulting data into y.da.

The following options are available to change the default performance of the program:

i1= file[.da] The first file is set to file[.da] instead of the default y1.da. The suffix da is added if
necessary.

i2= file[.da] The second file is set to file[.da] instead of the default y2.da. The suffix da is added if
necessary.

file1[.da] file2[.da]
The first and second files are set to file1[.da] and file2[.da], respectively, instead of
y1.da and y2.da. The suffix da is added if necessary.

of= file[.da] The image is written to file[.da]. The suffix da is added if necessary. The default out-
put file is y.da.

-s The data are subtracted, which is the default mode of operation.

-a The data are added.

-m The data are multiplied.

-d The data are divided.

w1=w The data in file one are weighted by w before the specified operation is performed. The
default value of the weight is one.

w2=w The data in file two are weighted by w before the specified operation is performed. The
default value of the weight is one.

-p The program will not print out information and therefore runs silently.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1),
minda(1), mag(1)

AUTHOR
Carl R. Crawford

10 31 December 1996

CMI(1) CMI(1)

NAME
cmi - combine mi-files using mathematical operations

SYNOPSIS
cmi [options] [file1[.mi] file2[.mi]]

DESCRIPTION
By default, cmi subtracts the data contained in a second file in2.mi from the data contained in a first file
in1.mi and writes the resulting data into out.mi. The minimum and maximum values in the two input files
and the output file are also reported.

The following options are available to change the default performance of the program:

i1= file[.mi] The first file is set to file[.mi] instead of the default in1.mi. The suffix mi is added if
necessary.

i2= file[.mi] The second file is set to file[.mi] instead of the default in2.mi. The suffix mi is added if
necessary.

file1[.mi] file2[.mi]
The first and second files are set to file1[.mi] and file2[.mi], respectively, instead of
in1.mi and in2.mi. The suffix mi is added if necessary.

of= file[.mi] The image is written to file[.mi]. The suffix mi is added if necessary. The default out-
put file is out.mi.

-s The images are subtracted, which is the default mode of operation.

-a The images are added.

w1=w The data in file one are weighted by w before the specified operation is performed. The
default value of the weight is one.

w2=w The data in file two are weighted by w before the specified operation is performed. The
default value of the weight is one.

offset=o The offset o is added to the result. The default value of the offset is zero.

-o Only one file is processed. This means that the pixels are multiplied by w1 and the off-
set offset is added.

-p The program will not print out information and therefore runs silently.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), cmi(1), daas(1), dami(1), exda(1),
fmm(1), minda(1), mag(1)

AUTHOR
Carl R. Crawford

19 March 2002 11

CPLOT(1) CPLOT(1)

NAME
cplot − generate contour plots

SYNOPSIS
cplot [options] [file[.da |.mi |.as]]

DESCRIPTION
cplot generates contours of a three dimensional surface. The resulting graphics is sent directly to the X-
window, called a plotting window, maintained by xplot(1). xplot(1) has to be running before executing
cplot. xplot(1) and cplot can be run on different hosts if the environment variable XPLOTHOST is used.

A matrix of binary floating point numbers will be read from a da-file named z.da and used as the z value at
each point. This vector will be displayed against a program generated xy-matrix containing integers from
zero to the number of points in each direction minus one. The points in the file are assumed to be rows of
values along lines of constant y.

The input file can be either a binary or an ASCII file. In a binary file, the data is coded in big-endian format.
The file can be generated using the fwrite(3s) statements in C or an unformatted write in Fortran or Pascal.
This is the most efficient form since it saves on both file space and machine time. mi-files, containing
images, and da-files, containing data with a header, can also be used as input. See parse_da(3) and
parse_mi(3) for information on these file formats.

For simple applications it is also possible to use an ASCII file with the numbers in a readable format. The
user must be careful to edit out any titles or other non-numeric information. The numbers are read from the
file in "free format". In other words, spaces, tabs and newlines can all be used to separate the numbers.
The program will read as many lines as necessary to get enough data for the plot as specified by the count,
skip and begin options (see below for additional information). The numbers that are read from the file
must not contain any spaces.

The program supports as many of the qplot(1) options as possible and in most cases the options/flags are
known by the same name. The most significant difference is that the data file is indicated by the z option
instead of the y option for obvious reasons.

The input data are a matrix of binary numbers. The type and location of the data is specified with the z
option. The matrix is considered to be size 64 x 64 unless one of the size options (size, xsize, or ysize) is
used. The use of mi- or da-files overrides this assumed size.

Data are read from the file along lines of constant y (x variable varies fastest). The first value in the file,
file(0), is z(x=0, y=0), the second is z(x=1, y=0) and so on. The second line (y=1) starts at number xsize in
the file (file(xsize) --> z(x=0, y=1)). It is very important that the variable xsize be set properly so that the
program can index into the matrix properly.

With the x and y options an arbitrary mapping can be made between points in the matrix (z) and the x and y
axis. Normally each line of the data is assumed to be equally spaced in x and y. With the x and y options
any arbitrary mapping is possible. The results are guaranteed to be meaningful only for monotonically
increasing mappings.

With the begin, skip and count parameters it is possible to specify that part of the input data be ignored. If
the begin options are used, the first xbegin data points of the z (per row) and x files are ignored. A similar
effect is seen if the ybegin parameter is specified. The default values are 0. If the skip options (skip,
xskip, and yskip) are set then lines in the input matrix are skipped between each point that is plotted. The
count option is used to set the number of data lines to plot. Normally the count parameters default to the
largest number possible, given the size, begin and skip variables.

OPTIONS
The following options and flags are available on the command line to modify the performance of the pro-
gram. Options can be minimally abbreviated.

12 17 September 2001

CPLOT(1) CPLOT(1)

**** FILE SPECIFICATION OPTIONS ****

z= file[,n] The z matrix will be read from file instead of z. The letter n is the data type declara-
tion field and can be one of the following:

c Single bytes, unsigned, fixed precision char data.

cs Single bytes, signed, fixed precision char data.

s Tw o bytes, signed, fixed precision short int data.

i Four bytes, signed, fixed precision int data.

l Four bytes, signed, fixed precision long int data.

f Four bytes, float data.

p Eight bytes, double floating-point data.

a ASCII data, free format numbers, data is readable, spaces, tabs and newlines are
used to separate input points.

d da-file, see the appendix of parse_da(3) for file format.

m mi-file, see the appendix of parse_mi(3) for file format.

If n isn’t specified, a comma is not needed after the file name. The default for n is d.

z=,n The z vector is read from the default file z but the byte declaration field is set to n.

-x Read the x vector from the file x. The data in the file is assumed to be a da-file.

x= file[,n] The x vector will be read from the file file instead of x. The data in the file is assumed
to be a da-file, unless a ,n is added. The variable n can be any of the suffixes shown
above with the z option.

-y Read the y vector from the file y. The data in the file is assumed to be a da-file.

y= file[,n] The y vector will be read from the file file instead of y. The data in the file is assumed
to be a da-file, unless a ,n is added. The value of n can be any of the suffixes shown
above with the z option.

xsize=n The matrix has n elements in the x-direction. The default value is 64. It is necessary to
specify this variable if the array is not 64 x 64. The program interprets the z-file as an
xsize by ysize matrix of values. It is not necessary to specify xsize or ysize if the input
format is da-files or mi-files.

ysize=n The matrix has n elements in the y-direction. The default value is 64. The program
interprets the z-file as an xsize by ysize matrix of values. It is not necessary to specify
xsize or ysize if the input format is da-files or mi-files.

size=n Set both xsize and ysize equal to n.

n=n This sets the xsize and ysize variables equal to n. This is equivalent to using the size
option.

17 September 2001 13

CPLOT(1) CPLOT(1)

**** DAT A SELECTION OPTIONS ****

xbegin=n The first n columns of the input in the z-file (per row) and n values in the x-file are
skipped. This is used to place the origin of the plot at an arbitrary position in the
matrix. The default value is 0.

ybegin=n The first n rows of the input in the z-file and n values in the y=file are skipped. This is
used to place the origin of the plot at an arbitrary position in the matrix. The default
value is 0.

begin=n Set the parameters xbegin and ybegin equal to n.

xskip=n Skip n columns in the z-file (per row) and n values in the x-file between plotted data
points. The default value is 0.

yskip=n Skip n rows in the z-file and n values in the y-file between plotted data points. The
default value is 0.

skip=n Set the parameters xskip and yskip equal to n.

xcount=n Only plot n of the columns in the matrix. Show n values in the matrix for each line of
constant y. The default value is the largest number of points that can be plotted for the
given xsize, xbegin and xskip.

ycount=n Only plot n of the rows in the matrix. Show n values in the matrix for each line of con-
stant x. The default value is the largest number of points that can be plotted for the
given ysize, ybegin and yskip.

count=n Set the parameters xcount and ycount equal to n.

zmin=r All points in the matrix below the level r are set to r. This is useful for seeing details in
the surface. See also the zmax option. The default value is obtained from the data
itself.

zmax=r All points in the matrix above the level r are set to r. This is useful for seeing details in
the surface. See also the zmin parameter. The default value is obtained from the data
itself.

xmin=min Normally the x-axis is annotated with values from zero to the number of y lines minus
one. With this option the minimum value on the x-axis is set to min.

xmax=max Only if used with the xmin option, floating-point annotations will be used between the
value set with this option, max, and the value set with the xmin option.

ymin=min Normally the y-axis is annotated with values from zero to the number of x lines minus
one. With this option the minimum value on the y-axis is set to min.

ymax=max Only if used with the ymin option, floating-point annotations will be used between the
value set with this option, max, and the value set with the ymin option.

**** PLOT POSITIONING AND REDUCING OPTIONS ****

xp=r The x starting coordinate of the axes is moved to position r on the plot plane. The
default value of r is 0. The plot is 10 units wide.

yp=r Same as the xp option but the y origin is moved to r on the plot plane. The plot is 10
units high.

scfac=r The graph is expanded or reduced in size by r. The default value is 1.0. The option
scale is a synonym for this parameter. There is another scale factor of two built into the
program.

14 17 September 2001

CPLOT(1) CPLOT(1)

-e Do not erase the xplot(1) window before plotting. This is useful for overlaying multi-
ple vectors on the same set of axes.

-o Send the plot(5) format output to stdout instead of via a socket connection to xplot(1).

host=[host][:socket]
Connect to the plotting window on the machine named host using socket number
socket. If the host is not specified, then the plotting window on the local host will be
used. If the host is the string stdout the plot(5) commands will be sent to standard out-
put. If the socket is not specified, then the socket listed in the section INTERPROCESS
COMMUNICATION will be used.

**** AXIS OPTIONS ****

-a No axes will be plotted.

-f A border will be drawn around the plot.

len=r Set the length of the axes to r. The default value is 3.

xlen=r The length of the x axis is changed to r units.

ylen=r The length of the y axis is changed to r units.

-g Superimpose a grid over the plot. The grid connects the tic-marks on the axes to each
other through a set of orthogonal lines.

**** LABEL OPTIONS ****

tl=str The string str will be used as a label at the top of the graph.

bl=str The string str will be used as a label at the bottom of the graph.

xl=str The string str is used as a label along the x axis.

yl=str The string str is used as a label along the y axis.

**** GRAPH OPTIONS ****

contours=r The number of contours is set to r. The default value is 10. The contours are set at
equal increments between zmin and zmax. The option c is a synonym for this parame-
ter.

t=r One contour will be drawn for the z value of r .

i=r Interpolate the data so that r extra points are inserted between each pair of data points
in the x and y directions. This option can be used to smooth out the contours when the
size of the surface is small. The default value is zero and the maximum value is ten.

ix=r Same as the i option but now only the interpolation factor for the x-axis is set.

iy=r Same as the i option but now only the interpolation factor for the y-axis is set.

DEFAULTS
The internal parse routines allow for two default mechanisms to specify options. The first method is to cre-
ate files .cplot in your HOME directory and/or .cplot in the working directory. In them, one can place
options and flags that will be used before parsing the command line. Lines beginning with a ’#’ are

17 September 2001 15

CPLOT(1) CPLOT(1)

considered to be comments. A ’#’ also marks the beginning of a comment anywhere else on an input line.
Parsing of arguments ends when either an end-of-file is reached or when the line beginning with the string
"//" is found. The second method to set default options is to use the environment variable CPLOTARGS.
The format is the same as the input command line. The order or parsing is: ˜/.cplot ./.cplot, CPLOTARGS,
and finally the command line. The flag -@, if present on the command line, will disable the use of the
default mechanisms.

FILES
˜/.cplot

./.cplot initialization (startup) files.

ENVIRONMENT
CPLOTARGS contains command line arguments.

HOME contains the shell’s concept of your home directory.

XPLOTHOST Can be used to specify the host and the socket for the plotting window. They hav e the
form [host][:socket]. The first one is used if both are set.

INTERPROCESS COMMUNICATION
8124 Default socket used to talk to plotting window.

SEE ALSO
qplot(1), crcplot(3), symbol(3), scale(3), parse_da(3), parse_mi(3), parse(3), parse_parse(3),
parse_canonical(3), plot(5), plot3d(1), plotps(1), xpic(1), xplot(1)

AUTHOR
Carl R. Crawford

cplot is based upon plot3d, which is based upon qplot. Malcolm Slaney dev eloped plot3d based on qplot.

BUGS
No check is made to insure that the number of points to read from the input file for each line
(count*(skip+1)+begin) is consistent with the size options.

16 17 September 2001

DAAS(1) DAAS(1)

NAME
daas - convert da-files to ASCII

SYNOPSIS
daas [options] [file[.da]]

DESCRIPTION
By default, daas converts the da-file named y.da into ASCII format and writes the resulting text on stdout.

The following options are available to change the default performance of the program:

if= file[.da]

file[.da] Data are converted from file[.da] instead of the default file y.da. The suffix da is added
if necessary.

of= file[.as] The image is written to file[.as]. The suffix as is added if necessary. The default out-
put file is stdout.

-n The data are numbered.

-p The program will not print out information and therefore runs silently.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1),
minda(1), mag(1)

AUTHOR
Carl R. Crawford

31 December 1996 17

DAMI(1) DAMI(1)

NAME
dami - convert da-files to mi-files

SYNOPSIS
dami [options] [file[.da]]

DESCRIPTION
By default, dami converts the da-file named y.da into a mi-file and writes it to a file named y.mi. The
resulting image is offset so that zero corresponds to 512. The data are scaled so that the values in the image
lie between zero and 1023.

The following options are available to change the default performance of the program:

if= file[.da]

file[.da] Data are converted from file[.da] instead of the default file y.da. The suffix da is added
if necessary.

of= file[.mi] The image is written to file[.mi]. The suffix mi is added if necessary. The default out-
put file is formed by replacing the da suffix in the input file with mi.

-p The program will not print out information and therefore runs silently.

scale=s The range of the output data is set to s. The default value, as noted above, is 1023.

zero=z The zero (mid-point) of the output data is set to z. The default value, as noted above, is
512.

min=x The value x is used instead of the minimum datum.

max=x The value x is used instead of the maximum datum.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1),
minda(1), mag(1)

AUTHOR
Carl R. Crawford

18 31 December 1996

DFT(1) DFT(1)

NAME
dft - takes the discrete Fourier transform (DFT) of da-files

SYNOPSIS
dft [options] [options/flags] [file[.da]]

DESCRIPTION
By default, dft takes the DFT of the each of the rows of data contained in the file y.da. The DFTs are writ-
ten to the file z.da. The number of output points is the number of points per row divided by two.

The following options are available to change the default performance of the program:

if= file[.da] The input data is read from file[.da] instead of the default y.da. The suffix da is added
if necessary.

of= file[.da] The DFT is written to file[.da]. The suffix da is added if necessary. The default output
file is z.da.

-l The logarithm of the DFT is written to file zl.da.

lf= file[.da] The logarithm of the DFT is written to file file.da.

m=m. The number of output points per row is set to m.

-c Takes the DFT of the columns of the input array.

-r Takes the DFT of the rows of the input array. This is the default mode of operation.

-p The program will not print out information and therefore runs silently.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), dft(1), daas(1), dami(1), exda(1),
fmm(1), minda(1), mag(1)

AUTHOR
Carl R. Crawford

18 July 2002 19

EXDA(1) EXDA(1)

NAME
exda - extract data from da-files

SYNOPSIS
exda [options] [file[.da]]

DESCRIPTION
By default, exda extracts the first record from the da-file named y.da and writes it to a file named y1.da.
The following options are available to change the default performance of the program:

if= file[.da]

file[.da] Data are extracted from file[.da] instead of the default file y.da. The suffix da is added
if necessary.

of= file[.da] The extracted data are written to file[.da] instead of the default file y1.da. The suffix
da is added if necessary.

-c Column mode is specified. By default when this option is used, the first elements in
each record in the input file are collected to form a new da-file.

first=r The first record to be extracted is r instead of record zero, which is the default. In col-
umn mode, this specifies the first record from which to extract a specified point.

count=n The number of contiguous records to be extracted is specified by n. The default value
is one. A synonym for this option is n=. In column mode, this specifies the number of
records from which to extract a specified point.

start=e Data beginning with element e within each record are extracted. By default all the data
in a record(s) are extracted. In column mode, this specifies which element in each
record to extract.

end=e Data ending with element e within each record are extracted. By default all the data in
a record(s) are extracted.

column=c specifies column mode, -c, and the element in each record to extract.

-P The user is prompted for program parameters.

-p The program will not print out information and therefore runs silently.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1),
minda(1), mag(1)

AUTHOR
Carl R. Crawford

20 31 December 1996

FMM(1) FMM(1)

NAME
fmm - find minimum and maximum of data contained in da-files

SYNOPSIS
fmm [-q] file[.da]...

DESCRIPTION
fmm finds the minimum and maximum of data contained in da-files specified on the command line. These
values are printed per file and also for the aggregate. The locations of the minima and maxima are printed
in the form (r,e), where r is the record number and e is the element number within a record. The first
record and element are numbered zero. The names of the files and their sizes (number of records x size of
record) are also reported. See parse_da(3) for additional information on da-files.

If the -q flag is present, then the output will be formatted for use with qplot(1). Specifically, the output is
in the form

ymin=minimum ymax=maximum

With this option the program can be used on the command line for qplot(1) to plot a number of vectors at
the same scale. An example of this functionality is:

qplot y1.da ‘fmm -q y1.da y2.da y3.da‘

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1),
minda(1), mag(1)

AUTHOR
Carl R. Crawford

31 December 1996 21

LC(1) LC(1)

NAME
lc - extract lines and columns from xpic’s canvas

SYNOPSIS
lc [options]

DESCRIPTION
lc reads rows (lines) and columns of data from a xpic(1) canvas. By default, the complete center row of the
canvas is written out to a da-file named line.da. The port option in xpic(1) has to be enabled before the
program will work. The port option is enabled either with the -p flag on xpic(1)’s command line or via the
port command within xpic(1). Column and row numbers begin with zero and continue up to the total num-
ber minus one.

OPTIONS
The following options are available on the command line to modify the performance of the program:

-c Pick up data in a column instead of a row.

-l Pick up data in a row. This is the default mode.

-d Pick up row or column from the last deposited position of the cursor in xpic(1). Note
that a cursor position in xpic(1) has to specified by depressing the left mouse button
when the cursor is positioned over the canvas.

-D Pick up row and column from the last deposited position of the cursor in xpic(1). Note
that a cursor position in xpic(1) has to specified by depressing the left mouse button
when the cursor is positioned over the canvas.

-p Don’t print out status of command.

-? Print out a help message. Note that the ’?’ has to be escaped (preceded with a ’\’) to
hide it from the shell.

of= file[.da] The line or column is stored in the file named file[.da]. The .da suffix is added if
required.

x=x The starting point of a row is set to x if in row mode. In this mode, the default starting
position is the first point (actually point zero) of the row. In column mode, the column
is set to x .

y=y The starting point of a column is set to y if in column mode. In this mode, the default
starting position is the first point (actually point zero) of the column. In row mode, the
row is set to y .

n=n The number of points in a line or column is set to n. By default all the points from a
line or column are read from the starting point.

host=h Extract data from the xpic(1) running on h. The default host is the machine on which
the command is executed.

port=p Extract data via port number p. The default port is the 8125. This can used in conjunc-
tion with the port= command in xpic(1) to access multiple displays running on the
same host.

SEE ALSO
cplot(1), xpic(1), plot3d(1), qplot(1), xplot(1), dami(1), armi(1), crcplot(3), parse_mi(3)

AUTHOR
Carl R. Crawford (ccrawford@analogic.com)

22 01 April 1998

MAG(1) MAG(1)

NAME
mag - magnify images contained in mi-files by two using bi-cubic interpolation

SYNOPSIS
mag [-p] infile[.mi] [outfile[.mi]]

DESCRIPTION
mag magnifies images contained in mi-files by a factor of two using bi-cubic interpolation. The image to
be magnified is the first image contained in infile. The filename can also include the suffixes :l or :L to
indicate that the last image should be read. The suffixes :f, or :F indicate that the first image should be
read. The suffix :n, where n is an integer, indicates that image n should be read, where the first image is
number one. If a suffix is used, the warning message is not printed. The resulting magnified image is
either returned to infile or written to outfile if the latter file is specified. The suffix mi is added to the file-
names if necessary.

The -p flag can be used to turn off the messages that the program normally displays.

SEE ALSO
parse(3), parse_mi(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1), minda(1),
mag(1)

AUTHOR
Paul Granfors wrote the magnification code and Carl R. Crawford surrounded it with a parser.

BUGS
If the input file contains multiple images and the output outfile is not specified, then the images not magni-
fied in infile will be lost.

31 December 1996 23

MINDA(1) MINDA(1)

NAME
minda - minifies da-files

SYNOPSIS
minda [options]

DESCRIPTION
By default, minda minifies the data contained in a file y.da by a factor of two in each direction. Boxcar
integration is used to lowpass filter the data before decimation. The resulting data is written to min.da.

The following options are available to change the default performance of the program:

if= file[.da] The input file is set to file[.da] instead of the default y.da. The suffix da is added if
necessary.

of= file[.da] The output file is set to file[.da] instead of the default min.da. The suffix da is added if
necessary.

xm=x The data are minified by a factor of x in the horizontal (x or column) direction. The
default value is two.

ym=y The data are minified by a factor of y in the vertical (y or row) direction. The default
value is two.

-t The program will transpose the array before output. The default is not to transpose the
output.

-p The program will not print out information and therefore runs silently.

SEE ALSO
qplot(1), parse(3), parse_da(3), xpic(1), armi(1), asda(1), cda(1), daas(1), dami(1), exda(1), fmm(1),
mag(1), minda(1)

AUTHOR
Chris Ruth (cruth@analogic.com)

24 31 December 1996

PLOT3D(1) PLOT3D(1)

NAME
plot3d − plot three dimensional surfaces

SYNOPSIS
plot3d [options] [file[.da |.mi |.as]]

DESCRIPTION
plot3d prints a view of a three dimensional surface. The resulting graphics is sent directly to the X-win-
dow, called a plotting window, maintained by xplot(1). xplot(1) has to be running before executing plot3d.
xplot(1) and plot3d can be run on different hosts if the environment variable XPLOTHOST is used.

A matrix of binary floating point numbers in a da-file will be read from a file called z.da and used as the z
value at each point. This vector will be displayed against a program generated xy-matrix containing inte-
gers from zero to the number of points in each direction minus one. The points in the file are assumed to be
rows of values along lines of constant y.

The input file can be either a binary or an ASCII file. In a binary file the data is coded in big-endian format.
The file can be generated using the fwrite(3s) statements in C or an unformatted write in Fortran or Pascal.
This is the most efficient form since it saves on both file space and machine time. mi-files, containing
images, and da-files, containing data with a header, can also be used as input. See parse_da(3) and
parse_mi(3) for information on these file formats.

For simple applications it is also possible to use an ASCII file with the numbers in a readable format. The
user must be careful to edit out any titles or other non-numeric information. The numbers are read from the
file in "free format". In other words, spaces, tabs and newlines can all be used to separate the numbers.
The program will read as many lines as necessary to get enough data for the plot as specified by the count,
skip and begin options (see below for additional information). The numbers that are read from the file
must not contain any spaces.

The program supports as many of the qplot(1) options as possible and in most cases the options/flags are
known by the same name. The most significant difference is that the data file is indicated by the z option
instead of the y option for obvious reasons.

The input data are a matrix of binary numbers. The type and location of the data is specified with the z
option. The matrix is considered to be size 64 x 64 unless one of the size options (size, xsize, or ysize) is
used. The use of mi- or da-files overrides this assumed size.

Data are read from the file along lines of constant y (x variable varies fastest). The first value in the file,
file(0), is z(x=0, y=0), the second is z(x=1, y=0) and so on. The second line (y=1) starts at number xsize in
the file (file(xsize) --> z(x=0, y=1)). It is very important that the variable xsize be set properly so that the
program can index into the matrix properly.

With the x and y options an arbitrary mapping can be made between points in the matrix (z) and the x and y
axis. Normally each line of the data is assumed to be equally spaced in x and y. With the x and y options
any arbitrary mapping is possible. The results are guaranteed to be meaningful only for monotonically
increasing mappings.

With the begin, skip and count parameters it is possible to specify that part of the input data be ignored. If
the begin options are used, the first xbegin data points of the z (per row) and x files are ignored. A similar
effect is seen if the ybegin parameter is specified. The default values are 0. If the skip options (skip,
xskip, and yskip) are set then lines in the input matrix are skipped between each point that is plotted. The
count option is used to set the number of data lines to plot. Normally the count parameters default to the
largest number possible, given the size, begin and skip variables.

OPTIONS
The following options and flags are available on the command line to modify the performance of the pro-
gram. Options can be minimally abbreviated.

17 September 2001 25

PLOT3D(1) PLOT3D(1)

**** FILE SPECIFICATION OPTIONS ****

z= file[,n] The z matrix will be read from file instead of z. The letter n is the data type declara-
tion field and can be one of the following:

c Single bytes, unsigned, fixed precision char data.

cs Single bytes, signed, fixed precision char data.

s Tw o bytes, signed, fixed precision short int data.

i Four bytes, signed, fixed precision int data.

l Four bytes, signed, fixed precision long int data.

f Four bytes, float data.

p Eight bytes, double floating-point data.

a ASCII data, free format numbers, data is readable, spaces, tabs and newlines are
used to separate input points.

d da-file, see the appendix of parse_da(3) for file format.

m mi-file, see the appendix of parse_mi(3) for file format.

If n isn’t specified, a comma is not needed after the file name. The default for n is d.

z=,n The z vector is read from the default file z but the byte declaration field is set to n.

-x Read the x vector from the file x. The data in the file is assumed to be in a da-file.

x= file[,n] The x vector will be read from the file file instead of x.da. The data in the file is
assumed to be a da-file unless a ,n is added. The variable n can be any of the suffixes
shown above with the z option.

-y Read the y vector from the file y. The data in the file is assumed to be in a da-file.

y= file[,n] The y vector will be read from the file file instead of y.da. The data in the file is
assumed to be in a da-file. unless a ,n is added. The value of n can be any of the suf-
fixes shown above with the z option.

xsize=n The matrix has n elements in the x-direction. The default value is 64. It is necessary to
specify this variable if the array is not 64 x 64. The program interprets the z-file as an
xsize by ysize matrix of values. It is not necessary to specify xsize or ysize if the input
format is da-files or mi-files.

ysize=n The matrix has n elements in the y-direction. The default value is 64. The program
interprets the z-file as an xsize by ysize matrix of values. It is not necessary to specify
xsize or ysize if the input format is da-files or mi-files.

size=n Set both xsize and ysize equal to n.

n=n This sets the xsize and ysize variables equal to n. This is equivalent to using the size
option.

26 17 September 2001

PLOT3D(1) PLOT3D(1)

**** DAT A SELECTION OPTIONS ****

xbegin=n The first n columns of the input in the z-file (per row) and n values in the x-file are
skipped. This is used to place the origin of the plot at an arbitrary position in the
matrix. The default value is 0.

ybegin=n The first n rows of the input in the z-file and n values in the y=file are skipped. This is
used to place the origin of the plot at an arbitrary position in the matrix. The default
value is 0.

begin=n Set the parameters xbegin and ybegin equal to n.

xskip=n Skip n columns in the z-file (per row) and n values in the x-file between plotted data
points. The default value is 0.

yskip=n Skip n rows in the z-file and n values in the y-file between plotted data points. The
default value is 0.

skip=n Set the parameters xskip and yskip equal to n.

xcount=n Only plot n of the columns in the matrix. Show n values in the matrix for each line of
constant y. The default value is the largest number of points that can be plotted for the
given xsize, xbegin and xskip.

ycount=n Only plot n of the rows in the matrix. Show n values in the matrix for each line of con-
stant x. The default value is the largest number of points that can be plotted for the
given ysize, ybegin and yskip.

count=n Set the parameters xcount and ycount equal to n.

zmin=r All points in the matrix below the level r are set to r. This is useful for seeing details in
the surface. See also the zmax option. The default value is obtained from the data
itself.

zmax=r All points in the matrix above the level r are set to r. This is useful for seeing details in
the surface. See also the zmin parameter. The default value is obtained from the data
itself.

xmin=min Normally the x-axis is annotated with values from zero to the number of y lines minus
one. With this option the minimum value on the x-axis is set to min.

xmax=max Only if used with the xmin option, floating-point annotations will be used between the
value set with this option, max, and the value set with the xmin option.

ymin=min Normally the y-axis is annotated with values from zero to the number of x lines minus
one. With this option the minimum value on the y-axis is set to min.

ymax=max Only if used with the ymin option, floating-point annotations will be used between the
value set with this option, max, and the value set with the ymin option.

**** PLOT POSITIONING AND REDUCING OPTIONS ****

xp=r The x starting coordinate of the axes is moved to position r on the plot plane. The
default value of r is 0. The plot is 10 units wide.

yp=r Same as the xp option but the y origin is moved to r on the plot plane. The plot is 10
units high.

scfac=r The graph is expanded or reduced in size by r. The default value is 1.0. The option
scale is a synonym for this parameter. There is another scale factor of two built into the
program.

17 September 2001 27

PLOT3D(1) PLOT3D(1)

-e Do not erase the xplot(1) window before plotting. This is useful for overlaying multi-
ple vectors on the same set of axes.

-o Send the plot(5) format output to stdout instead of via a socket connection to xplot(1).

host=[host][:socket]
Connect to the plotting window on the machine named host using socket number
socket. If the host is not specified, then the plotting window on the local host will be
used. If the host is the string stdout the plot(5) commands will be sent to standard out-
put. If the socket is not specified, then the socket listed in the section INTERPROCESS
COMMUNICATION will be used.

**** AXIS OPTIONS ****

-a No axes will be plotted.

axis=[xyz] An axis will be plotted only for axis listed after the equals sign. The default action is
xyz which labels all three axis of the plot.

-f A border will be drawn around the plot.

len=r Set the length of all axes to r.

xlen=r The length of the x axis is changed from eight plot units to r units. This parameter is
relative to the default value of 6. The actual length of the x axis in the 2d plot coordi-
nate system is a function of the angle of view and the scfac.

ylen=r The length of the y axis is changed from eight plot units to r units. This parameter is
relative to the default value of 6. The actual length of the y axis in the 2d plot coordi-
nate system is a function of the angle of view and the scfac.

zlen=r The length of the z axis is changed to r units. This parameter is relative to the default
value of four. The actual length of the y axis in the 2d plot coordinate system is a func-
tion of the angle of view and the scfac.

**** LABEL OPTIONS ****

tl=str The string str will be used as a label at the top of the graph.

bl=str The string str will be used as a label at the bottom of the graph.

xl=str The string str is used as a label along the x axis.

yl=str The string str is used as a label along the y axis.

zl=str The string str is used as a label next the z axis.

**** GRAPH OPTIONS ****

phi1=theta The surface is rotated around the z-axis by an angle of theta before plotting. The zero
angle corresponds to looking down the y axis. The default value is 40 degrees. rz is a
synonym.

phi2=theta The observation plane is tilted by theta degrees about the horizontal axis. Zero degrees
corresponds to looking at the surface from the xy-plane; 90 degrees is looking at the
object from directly above. Neither of the two views at the extremes provide much
information. The default value is 30 degrees. rx is a synonym.

28 17 September 2001

PLOT3D(1) PLOT3D(1)

-r Reverse the direction of the z-axis. This effectively multiplies each data point by -1.

direction=[xy] Plot lines along the axis (or axes) specified by this parameter. The default is to plot the
lines along the y axis. The graph will often appear simpler if lines are only drawn in
one direction.

resolution=x This parameter controls the resolution of the hidden surface removal subroutine. The
default value is 1.0 and larger values can be used to produce a more accurate estimate
of the line intersections at the expense of more computer time. Values larger than one
are generally needed only for publication quality plots of functions with large number
of discontinuities. Conversely a value smaller than one will save computer time at the
expense of small errors in the intersections. The valid range for x is (0.7,4.0).

DEFAULTS
The internal parse routines allow for two default mechanisms to specify options. The first method is to cre-
ate files .plot3d in your HOME directory and/or .plot3d in the working directory. In them, one can place
options and flags that will be used before parsing the command line. Lines beginning with a ’#’ are consid-
ered to be comments. A ’#’ also marks the beginning of a comment anywhere else on an input line. Pars-
ing of arguments ends when either an end-of-file is reached or when the line beginning with the string "//"
is found. The second method to set default options is to use the environment variable PLOT3DARGS. The
format is the same as the input command line. The order or parsing is: ˜/.plot3d ./.plot3d, PLOT3DARGS,
and finally the command line. The flag -@, if present on the command line, will disable the use of the
default mechanisms.

FILES
˜/.plot3d

./.plot3d initialization (startup) files.

ENVIRONMENT
PLOT3DARGS contains command line arguments.

HOME contains the shell’s concept of your home directory.

XPLOTHOST Can be used to specify the host and the socket for the plotting window. They hav e the
form [host][:socket]. The first one is used if both are set.

INTERPROCESS COMMUNICATION
8124 Default socket used to talk to plotting window.

SEE ALSO
qplot(1), crcplot(3), plot3d(3), symbol(3), scale(3), parse_da(3), parse_mi(3), parse(3), parse_parse(3),
parse_canonical(3), plot(5), cplot(1), plotps(1), xpic(1), xplot(1)

AUTHORS
Mani Azimi assembled the basic hidden line removal routines that plot3d is based upon from software
written by a couple of people. He also converted the code from Fortran to C and fixed a number of bugs.
Malcolm Slaney combined Azimi’s code with Carl Crawford’s original version of qplot. Crawford adapted
Slaney’s version for use at GE Medical Systems and added the da- and mi-file formats. Funding for the
development of this software was originally provided by Professor Avi Kak of the Electrical Engineering
Department at Purdue University.

BUGS
No check is made to insure that the number of points to read from the input file for each line
(count*(skip+1)+begin) is consistent with the size options.

The resolution parameter really shouldn’t be necessary.

Plots at angles near multiples of ninety degrees have some problems.

17 September 2001 29

PLOTPS(1) PLOTPS(1)

NAME
plotps − convert plot(5) files to Postscript

SYNOPSIS
plotps [options] [file]

DESCRIPTION
plotps reads plot(5) format commands from standard input and converts them to POSTSCRIPT format on the
standard output. The conversion is almost one-for-one, with one POSTSCRIPT function call for each plot
primitive. By default, the output is printed at 60% of full scale. Usually the program is piped into lpr(1);
in this case the -g flag for lpr(1) should not be used.

OPTIONS
The following options are available on the command line to modify the performance of the program:

scale=s Change the percent of full size of the output, where the units on this option are [1,100].
The default is 60%.

-e Encapsulated postscript (EPS) is generated. EPS an can be used in Interleaf, Ditroff
and in TeX.

-x Same as the -e option with the exception that the plot commands are taken from the
current display of xplot(1).

-X The plot commands are taken from the current display of xplot(1).

-l Print in the landscape orientation.

-p Print in the portrait orientation. This is the default orientation.

hor=h The horizontal offset of the plot is changed from 0.5 to h inches. The offset is ignored
when EPS is generated.

ver=v The vertical offset of the plot is changed from 0.5 to v inches. The offset is ignored
when EPS is generated.

bbx=sx

bby=sy The horizontal and vertical sizes of the bounding box used for EPS are scaled by sx and
sy, respectively. Their default values are one. These parameters are used to shrink or
grow the bounding box with respect to the actual plotting area defined with the
space(3) or plot_space(3) (part of plotcrc(3)) commands. These commands invoke the
-e option.

SEE ALSO
xplot(1), qplot(1), plot3d(1), cplot(1), crcplot(3), plotcrc(3), plot(3x), plot(5), space(3), lpr(1)

AUTHOR
Carl R. Crawford

BUGS
A way is needed to change the position, orientation, and absolute size of the final output.

In EPS mode, there is no check to make sure that bounding box really bounds the graphics.

NOTES
POSTSCRIPT is a registered trademark of Adobe Systems Incorporated.

30 21 August 1995

QPLOT(1) QPLOT(1)

NAME
qplot − quickly plot vectors

SYNOPSIS
qplot [options] [file[.da |.as]]

DESCRIPTION
qplot takes as its input a y-vector and optionally an x-vector and produces as its output an x-versus-y plot
of the input data. The resulting graphics is sent directly to the X-window, called a plotting window, main-
tained by xplot(1). xplot(1) has to be running before executing qplot. xplot(1) and qplot can be run on
different hosts if the environment variable XPLOTHOST is used.

The program is basically a parser built around a plotting core. The parser provides options to control the
relatively simple graphics output. The idea behind the program is that in scientific applications the first pri-
ority is to provide a method to visualize data without having to write a large amount of software for each
new application. The program provides a method to supply the user with simple graphics output for many
applications.

The default input file is y.da and is assumed to be in da-file format. See the appendix of parse_da(3) for a
description of da-files. The input files can also be in ASCII format. In this case, the data consists of up to
200 columns of numbers. The numbers should be separated with spaces or tabs. A number itself cannot
contain any spaces. The user must be careful to edit out any titles or other non-numeric information before
plotting. The program also supports raw binary files that do not contain any file headers.

OPTIONS
The following options and flags are available on the command line to modify the performance of the pro-
gram. Options can be minimally abbreviated.

**** FILE SPECIFICATION OPTIONS ****

y= file

file The y vector is read from file. The default file-type suffix is .da. If the -c option is
used then the default is .as. If the -b flag is used, then the file is assumed to be in raw
binary format and no suffix is added. For binary files, the type option can be used to
change the default format of the binary file.

x= file Read the x-vector from file. The default file-type suffix is .da or .as if the -c flag is
used.

-x Equivalent to x=x.da or x=x.as if the -c flag is invoked.

-c Invoke the character mode. In this mode data is read from as-files instead of da-files.
An as-file is an ASCII file containing columns of numbers.

cxy= file The -c flag is invoked and the x- and y-vectors are extracted from the first two columns
of file. The default file name is cxy[.as].

nx=col The x-vector is read from column col instead of column one. If the cxy option has not
been used, then the -x flag will be invoked.

ny=col The y-vector will be read from column col instead of column one. If the cxy option has
not been used, then the column number is absolute. If the cxy option has been used,
then the column number is relative to the x-column number and col can be negative.

-b Specifies that the input files are raw binary instead of da-format or ASCII.

type=t Set the default binary file type to t, where t is in the set {r,f,i,l,d,s} which corresponds
to real, float, integer, long, double and short, respectively. The default type is float.
The data have to be in big-endian format.

26 July 1998 31

QPLOT(1) QPLOT(1)

**** DAT A SELECTION OPTIONS ****

count=c Read only c points from the input vectors. If c is negative, then the units on c are
records. The default value of c is -1.

skip=n Read only every n’th plus 1 point from the input vectors. The default value is zero.

begin=b Begin plotting with the b’th point in the input vectors. The first point in a vector is
b=0. If b is negative, then the units on b are records.

ymax=max Normally the maximum value on the y-axis is the maximum value found in the input
vector. This option overrides this feature and sets the value on the axis to max.

ymin=min Same as the ymax option but works on the minimum value for the y-axis.

xmin=min Normally the x-axis is annotated with values from zero to the number of points in the y
vector minus one. Note that there is no maximum number of points. With this option
the minimum value on the x-axis is set to min.

xmax=max Only if used with the xmin option, floating-point annotations will be used between the
value set with this option, max, and the value set with the xmin option.

-n Override the minimum and maximum values on the axes and put in "nice" values using
scale(3).

-s Save the XMIN, XMAX, YMIN, and YMAX values used on the axes in a file named
xy.as. The format of the file is (XMIN, XMAX, YMIN, YMAX) written in e-format. The
values can be used by another execution of the program using the s option.

s= file There are two modes for this option. If this option appears with the -s flag, then the
actions dictated by the use of -s will be followed with the exception that the scale infor-
mation will be saved in the file file[.as] . If this option appears without -s, then the val-
ues in file[.as] will be read in and used as scale values for the current plot. The xmin,
xmax, ymin and ymax options can be used to override the values contained in the scale
file.

**** PLOT POSITIONING AND LOOK, OPTIONS ****

scale=s

scfac=s Scale the final output by s. The default value is one.

xp=x Move the complete graphics output by x plot-units along the x-axis. The value can be
positive or neg ative.

yp=y Move the complete graphics output by y plot-units along the y-axis. The value can be
positive or neg ative.

-f Draw a frame around the graph.

-e Don’t erase the display before plotting.

-g Superimpose a grid over the plot. The grid connects the tic-marks on the axes to each
other through a set of orthogonal lines.

-o Send the plot(5) format output to stdout instead of via a socket connection to xplot(1).

host=[host][:socket]
Connect to the plotting window on the machine named host using socket number
socket. If the host is not specified, then the plotting window on the local host will be

32 26 July 1998

QPLOT(1) QPLOT(1)

used. If the host is the string stdout the plot(5) commands will be sent to standard out-
put. If the socket is not specified, then the socket listed in the section INTERPROCESS
COMMUNICATION will be used.

quadrant=q

nanant=n

hexant=h The output window is broken up into 4, 9 or 16 regions for the quadrant, nanant, and
hexant commands, respectively. The graphics output is scaled and translated to fit into
the specified region. If the region is negative, then the subregion will be shifted over to
the right by the field-of-view.

**** AXIS OPTIONS ****

-a Don’t plot the axes.

xlen=l Set the length of the x-axis to l plot-units. The default length is three plot-units.

ylen=l Set the length of the y-axis to l plot-units. The default length is three plot-units.

len=l Set the length of both axes to l plot-units.

**** GRAPH OPTIONS ****

-d Plot the vector with a dashed line. The length of the dash and gap segments of the
dashed line are both 0.1 plot units by default.

dash=d Set the length of the dash section of a dashed line to d plot-units. This option invokes
the -d flag.

gap=g Set the length of the gap section of a dashed line to g plot-units. This option invokes
the -d flag.

-m Mark every point in the graph of the vector with an on-line-symbol.

j=n Invoke the -m flag, but mark only every n’th point. If n is negative, do not connect the
symbols with lines.

sym=s Invoke the -m flag, but use the s’th symbol for marking purposes. The descriptions of
the symbols can be found in symbol(3).

**** LABEL OPTIONS ****

xl=label Plot the string label below the x-axis. Double quotation marks must be used if the label
contains spaces or meta-characters.

yl=label Plot label next to the y-axis. Double quotation marks must be used if the label contains
spaces or meta-characters.

tl=label Plot the string label above the graph. Double quotation marks must be used if the label
contains spaces or meta-characters.

bl=label Plot the string label below the x-axis label. Double quotation marks must be used if the
label contains spaces or meta-characters.

el=label The string label will be plotted just to the right of the last point of the plotted vector.

26 July 1998 33

QPLOT(1) QPLOT(1)

-l The user will be prompted via the terminal for labels not entered on the command line.
A null label can be entered by entering <nl> after a prompt.

-L The file names used for the x- and y-vectors are used as labels for the axes.

DEFAULTS
The internal parse routines allow for two default mechanisms to specify options. The first method is to cre-
ate files .qplot in your HOME directory and/or .qplot in the working directory. In them, one can place
options and flags that will be used before parsing the command line. Lines beginning with a ’#’ are consid-
ered to be comments. A ’#’ also marks the beginning of a comment anywhere else on an input line. Pars-
ing of arguments ends when either an end-of-file is reached or when the line beginning with the string "//"
is found. The second method to set default options is to use the environment variable QPLOTARGS. The
format is the same as the input command line. The order or parsing is: ˜/.qplot ./.qplot, QPLOTARGS, and
finally the command line. The flag -@, if present on the command line, will disable the use of the default
mechanisms.

FILES
˜/.qplot

./.qplot initialization (startup) files.

ENVIRONMENT
QPLOTARGS contains command line arguments.

HOME contains the shell’s concept of your home directory.

XPLOTHOST Can be used to specify the host and the socket for the plotting window. It has the form
[host][:socket]. The first one is used if both are set.

INTERPROCESS COMMUNICATION
8124 Default socket used to talk to plotting window.

SEE ALSO
cplot(1), crcplot(3), symbol(3), scale(3), parse_da(3), parse(3), parse_parse(3), parse_canonical(3),
plot(5), plot3d(1), plotps(1), xpic(1), xplot(1)

AUTHOR
Carl R. Crawford

BUGS
The program tends to hang will hang if invalid floating point data is contained in the input vectors.

34 26 July 1998

SAGCOR(1) SAGCOR(1)

NAME
sagcor - generate sagittal, coronal and and projection images from mi-files

SYNOPSIS
sagcor [options] [file[.mi]]

DESCRIPTION
By default, sagcor generates the central coronal slice from the images contained in the mi-file named
pic.mi and writes the resulting coronal slice to a file named sc.mi. The program can also generate sagittal
and projection images. The following options are available to change the default performance of the pro-
gram:

if= file[.mi]

file[.mi] Images are extracted from file[.mi] instead of the default file pic.mi. The suffix mi is
added if necessary.

-v Generates a synthetic view of the resulting coronal or sagittal slices. That is, the coro-
nal or sagittal slices are generated as per above. Then the set of slices is averaged to
generate one output slice.

of= file[.mi] The generated images are written to file[.mi] instead of the default file sc.mi. The suf-
fix mi is added if necessary. Synthetic views are written with parse_wmi so that "__"
can be used to append files. Otherwise, the mi-file is written from scratch.

-c Generates coronal slices. This is the default image type.

-s Generates sagittal slices. The default image type is coronal.

fimage= first

limage=last The program by default uses all the images in the input file. These options restrict the
program to using images from first to last. The first image is image one.

ro w=row Generates the coronal image at row row instead of the central row. Row one is the top
row of the input images.

col=col Generates the sagittal image at column col instead of the central column. Column one
is the left column of the input images.

n=n Generates n images beginning at row or col.

-a Generates all of the possible coronal or sagittal images. This effectively sets n to the
number of rows or columns in the input images.

-p The program will not print out information and therefore runs silently.

offset=offset The number offset is subtracted from every input pixel. The result is set to zero if the
subtraction is less than zero.

SEE ALSO
crc(1)

AUTHOR
Carl R. Crawford

18 April 2003 35

XPC(1) XPC(1)

NAME
xpc - control xplot

SYNOPSIS
xpc
xpc -h
xpc -p
xpc -a text...

DESCRIPTION
xpc is used to control some of the functions of xplot(1).

When no options are specified, the program clears the xplot(1) plotting area. This is equivalent to using the
erase(3) function in crcplot(3) and to using the Erase button in xplot(1).

When -h is present, the program sends the graphics contained in the plotting area of xplot(1) to the line-
printer. This is equivalent to using the hardcopy(3) function in crcplot(3) and to using the Hardcopy but-
ton in xplot(1).

When the -a flag is specified, the rest of the command line is used to annotate the bottom of the plotting
area in xplot(1). The current date and time are placed before the user-specified text.

When the -p option is used, stdin is copied to xplot(1). This mode is used to send plot(5) commands to
xplot(1) when the originating program does not use plotcrc(3).

ENVIRONMENT
XPLOTHOST the host on which xplot(1) is running. If not specified, xplot(1) on the current host is

used. If the name of the host is stdout, the plotting commands in plot(5) format will be
sent to standard output.

SEE ALSO
cplot(1), qplot(1), crcplot(3), symbol(3), scale(3), parse_da(3), parse_intro(3), parse_parse(3), plot(5),
plot3d(1), plotps(1), xpic(1), xplot(1)

AUTHOR
Carl R. Crawford

36 21 August 1995

XPIC(1) XPIC(1)

NAME
xpic − display images in the X environment

SYNOPSIS
xpic [generic-tool-args] [xpic-options] [xpic-flags]

DESCRIPTION
xpic consists of four windows: a canvas in which images are displayed; a tty in which user commands are
entered; a panel in which some commands can be invoked and messages are displayed; and a graphical file
browser which can optionally be displayed. The default sizes of the canvas and the tty windows can be
altered on the command line. By default xpic’s browser is hidden. Provision has been made for subdivid-
ing the canvas into subcanvases in which different images can be displayed.

xpic reads and displays images in either mi-file or LM format. Both the original and and full field-of-view
versions are supported at compile time. In the case of LM files, the high or low axial images, or the 0, 45,
or 90 degree projections can be displayed. The program bounces the current canvas definition against the
size of the image, and does the best it can to display the image. If the image to be read is smaller than the
current canvas, it will be written to the center of the canvas. If larger, the center portion fitting the canvas
will be displayed.

The basic operating mode of xpic is as follows. The user selects a default operating directory using cd.
Then a file containing an image is opened using open or the file browser. Finally, the images in the file can
be displayed by specifying the actual image numbers.

COMMANDS
The following commands can be entered in the tty window. The string xpic> is used as a prompt to indi-
cate that xpic is ready for input. All commands can be abbreviated to their shortest unique prefix. Informa-
tion contained between square brackets ([]), is optional. A list of choices is specified by having the ele-
ments of the list separated by vertical bars (|). Sometimes the list will be surrounded by curly brackets
({}).

**** FILE AND IMAGE DISPLAY COMMANDS ****

cd [dir] Changes the current working directory to dir. The default working directory is the
directory from which xpic was inv oked. If no arguments are specified, then the work-
ing directory will be changed to the value specified in the environmental variable
HOME.

open [˜[user]][/dir1/.../dirn]file[{.mi | .mi.gz | .lm}][={i | z | l[hlp]}] ...
Open accepts n arguments of the specified format. Opens a file named file from the
home directory of the user user or the current user if none is specified. The expression
file may contain shell style wildcards, * ? [] ̂ . The * wildcard specifies any string of
characters. This includes a NULL string. The ? wildcard specifies any single charac-
ter. The [and] characters can be used to indicate a range of valid characters. Finally,
the ˆ character, used in conjunction with the square brackets indicates a range of char-
acters to exclude in a search, rather than include. A directory path, dir1 through dirn
may be specified. The actual file opened is relative to the current working directory. See
the cd command for additional information. The =i, =l, and =z suffixes indicate the the
file type is a MI, LM, and GZMI respectively. The GZMI file type indicates a gzipped
MI file, with the suffix .mi.gz. In the case of LM files, the high or low axial images, or
the projections can be displayed using the additional suffixes of h, l, and p, respec-
tively. If no additional suffix is specified for an LM file, the default is h. Image num-
bers 1, 2, and 3, correspond to the 0, 45 and 90 degree projections respectively. The
default image type for LM files is high energy axial images. The file type remains set
until a different suffix is specified. The suffix .mi is appended to the file if the file type
is set to MI. The suffix .lm is appended to the file if the file type is set to LM. The

9 February 2008 37

XPIC(1) XPIC(1)

suffix .mi.gz is appended to the file if the file type is set to MIGZ. If this command is
invoked with the suffix and without a file name, then the file type will be set to the
specified suffix. The reset command is automatically called if the autoreset option is
set via set.

A command which is a single number will cause that image to be written into the cur-
rent canvas or subcanvas if a subcanvas has been defined. The subcanvas is automati-
cally cleared if the autoclear option is set via set. The automatic window/level func-
tion of the wl command is automatically performed if the autowl option is set via set.

#,#/#... A list of numbers, possibly with one or more slash characters (’/’) included will com-
mand the program to put up the listed images in a multiple-image mode. Image num-
bers may be separated by spaces or commas. A slash (’/’) denotes the end of a row of
image numbers to be written horizontally. An implied ’/’ character is assumed at the
end of the list, so don’t put one there unless you want an empty row. The list is evalu-
ated, and the canvas subdivided as follows: the vertical size of each small image is the
full current canvas height divided by the number of rows implied by the list (the num-
ber of ’/’ characters plus one). Within each row, the width of each small image is the
full canvas width divided by the number of images in that row. Any subcanvas defini-
tion is canceled when this mode is invoked.

Examples of multiple-image display mode:

"1-3/4-6/9-7" would result in a 3 x 3 display; images 1,2,3 on top, images 4,5,6 in cen-
ter row, and 9,8,7 on bottom.

"5/7/8-10" would give image 5 across the top, 7 in middle, and 8,9,10 across the bot-
tom.

"1,2,3//4 5 6/" would give 1,2,3 across the top, an empty row, then 4,5,6, and another
empty row (remember the implied ’/’ at the end). After all is done, you could go to a
different file and do multiple display of "/1 2 3//4 5 6" to sandwich the corresponding
images in between the others.

#,#|#... Same as the "#,#/#..." command with the exception that ’|’ specifies a column of images
instead of a row of images. A specification of image numbers cannot include both row
(’/’) and column (’|’) characters.

#,#,#-#@ Same as the "#,#/#..." command with the exception that the images are displayed in a
grid that is determined by the number of images specified. The image buffer is cleared
before the images are displayed.

images [list] Executes previous set of commands as if images was not typed. The purpose of this
command is to support the help command for image loading.

+ The next image in the file is displayed in the current subcanvas. If the current image is
the last image in the file, then the first image is displayed. If a file has been opened but
no images have been previously displayed, then the first image is displayed. The button
labeled "+" on the panel performs the same function as this command. The increment
between images is the value skip set with the set command; the default value is one.

- The previous image in the file is displayed in the current subcanvas. If the current
image is the first image in the file, then the last image is displayed. If a file has been
opened but no images have been previously displayed, then the first image is displayed.
The increment between images is the negative of the value of skip set with the set com-
mand; the default value is negative one. The button labeled "-" on the panel performs
the same function as this command.

file [root:suffix:]file1,file2/file3...
Same as the "#,#/#..." "#,#|#..." commands with the exception that each tile is filled
with the first image in the specified file names. If root and/or suffix are present, they
are prepended and appended, respectively, to the rest of the file names.

38 9 February 2008

XPIC(1) XPIC(1)

cine [first last [pause] [-s skip]]
Displays the images from first to last in sequential order. The command is equivalent
to sending first, first+1, ... The command pauses between images by an amount equal
to pause milliseconds, where the default is zero milliseconds. The command remem-
bers previous setting of first, last, and pause so that the command can be repeated
when no arguments are present. The command traverses images from greatest to least
if first is larger than last. The -s switch may be added to the end of the a cine com-
mand to specify the number of frames xpic increments by between screen updates.
This option can be used regardless of whether pause is specified. The skip argument is
the number of frames xpic will increment or decrement by each time it changes an
image. Skip should be a positive integer. When traversing in the positive direction
(incrementing image indices) through an image file the final image will be the greatest
integer (including zero) multiple of skip less than the specified final image, offset by
the first image specified. When traversing in the negative direction (decrementing
image indices), the inverse rule applies.

reopen [type] The file previously opened with the open command is closed and then reopened. This
command is useful when an external program has changed the contents of the file. If
type is present, then =type is appended to the filename before reopening the file. This
mode can be used to change the type of image read from a file. At present, it is only
useful with the LM file format for changing between high energy, low energy, and pro-
jection images.

browse [path] Open the graphical browser window to display the contents of path. If no path is speci-
fied, then the browser will open to display the contents of the current working directory.
difference [image [offset]] Subtract image numbered image from the image currently
loaded in the canvas. By default, 1024 will be added to the difference. Setting offset
will change the additive offset. The offset stays in affect until the next time offset is
specified. The command without any arguments prints the value of the offset.

center x y Selects the center coordinate, (x,y), of the input image(s) to be placed in the center of
the display canvas (or subcanvas). Coordinates are (0,0) for the upper left-hand pixel of
an image, and increase in x to the right, and y to the bottom. Entering this command
without any arguments will revert to the default mode which places the image’s center
at the current canvas’s center.

corner x y Selects the coordinate, (x,y), of the input image(s) to be placed in the upper-left corner
of the display canvas (or subcanvas). Coordinates are (0,0) for the upper left-hand pixel
of an image, and increase in x to the right, and y to the bottom. Entering this command
without any arguments will revert to the default mode which places the image’s center
at the current canvas’s center.

scroll x y Moves the center or corner set with the center or corner commands by (x,y) and redis-
plays the images. If neither the center nor the corner are set, then the center is set to the
center of the image and then scrolled. The new values of the center or the corner are
calculated modulo the x- and y-extents of the image. If x,y are not specified, then the
previous values of the command are used. The default values of x and y are the x- and
y-sizes of the canvas, respectively. The values of x and y can also be set using the set
command using the variables scrollx and scrolly. The canvas can also be scrolled using
the panel buttons "u", "d", "l" and "r"; see the Control Panel section for additional infor-
mation. When scrolling, the autoclear function can be used to prevent the canvas from
being littered with old versions of the image.

environment [{[[-d] env] | + | -}]
Without arguments, the commands lists the ten environments supported by xpic. A file
can be opened in each environment and each each environment can be a different direc-
tory and different file type. The directory, image name, and image type are printed for
each environment. The current environment is indicated with an asterisk. If env is

9 February 2008 39

XPIC(1) XPIC(1)

specified (in the range one to ten), then the environment is changed to the specified
number. If -d is present, then the current environment is duplicated in the designated
environment; if a file was open in the new environment, it is closed; if a file was open in
the current environment, it is not left open in the new environment. If + is specified,
the environment is incremented to the next one, unless current environment is the maxi-
mum environment. In this case the current environment is set to the lowest possible
environment. If - is specified, the environment is decremented to the previous one,
unless current environment is the minimum environment. In this case the current envi-
ronment is set to the highest possible environment.

**** SUBCANVAS COMMANDS ****

quadrant q Request that images be displayed in a quadrant q of the original canvas. The valid
range for q is [1,4]. If q is + or - then the next or prior quadrant will be referenced.

nanant n Request that images be displayed in a nanant n of the original canvas. The valid range
for n is [1,9]. If n is + or - then the next or prior nanant will be referenced.

hexant h Request that images be displayed in a hexant h of the original canvas. The valid range
for h is [1,16]. If h is + or - then the next or prior hexant will be referenced.

horizontal o [d] Set the horizontal offset and dimension from the left boundary of the canvas to o and d,
respectively. The default dimension is the current horizontal size of the canvas or sub-
canvas.

vertical o [d] Set the vertical offset and dimension from the top boundary of the canvas to o and d,
respectively. The default dimension is the current vertical size of the canvas or subcan-
vas.

reset Resets any subcanvas specification. The default states of the center and corner com-
mands are also set with this command.

copyquad s d Copy the contents of the source quadrant, s, to the destination quadrant, d. The subcan-
vas is set to the destination quadrant.

**** CURSOR AND ANNOTATION COMMANDS ****

cursor [on | off]

cursor [-d]

cursor -p x y Turns on or off cursor reporting. If no arguments are specified, then the status of the
reporting function is toggled. When the mouse is positioned inside the canvas, the x
and y locations of the mouse along with the value of the image are reported in the lower
left corner of the canvas or in the panel. If the box cursor is enabled (see below), then
only the location of the center of the box will be reported. If the left mouse button is
depressed, then the position of the cursor and the value of the image at that location
will be displayed in the tty window. The -d flag indicates that the cursor should be
deposited. Depressing the right mouse button will also deposit the cursor. The -p flag
positions the cursor at the specified x- and y-location. The value of the image at that
location is also printed.

box [on | off]

box -s x y

40 9 February 2008

XPIC(1) XPIC(1)

box -p x y Turns on or off the box cursor capability. If no arguments are specified, then the status
of the reporting function is toggled. The command invokes cursor if necessary. The
center of the box is reported in the lower left hand corner of the canvas or in the panel.
If the left mouse button is depressed, then the mean and standard deviation of the ROI
defined by the box are reported in the lower left hand corner of the canvas or in the
panel. The size of the box can be varied by dragging the mouse with the middle button
depressed. The mean and standard deviation, along with the minimum and maximum
pixels in the box, are also reported in the tty window. On the line below the mean, the
center and size of the box are also reported. If the -s flag is present, then the size of the
box will be set to x by y. If the -p flag is present, then the position of the box will be
set to x and y. The box will also be enabled with the -s and the -p flags.

roi [-e|b] [x y [xw yw]]
Calculates the statistics of an image in a region-of-interest (ROI). The default region is
the presently displayed box cursor. See the box command for additional details about
the the actual statistics. The roi is calculated for a box centered at x,y if specified. The
size of the box, by default, is the last size of the box cursor. The size of the box can be
changed with the inclusion of the xw,yw options on the command line. The roi is calcu-
lated in the ellipse circumscribed by the rectangular roi if the -e flag is present. The -b
flag turns the mode back to a box. The box/ellipse mode is preserved for the next invo-
cation. The mode can also be set with set. Values less than the value roiminimum set
with the set command are excluded from the calculations.

**** LOOK-UP TABLE COMMANDS ****

window [+ | -] win
Sets the window setting to win if no sign is specified. Otherwise, win is added or sub-
tracted to the present window setting.

level [+ | --] lev Sets the level setting to lev if no plus sign or one minus sign is specified. Otherwise,
lev is added or subtracted to the present level setting.

wl win lev Sets the window and level to win and lev, respectively.

wl -a Sets the window and level based on the minimum and maximum pixel values in the
subcanvas. The algorithm is not always perfect, but it gets you to a good starting point
for manual adjustment.

wl -r [low high]

wl -b [low high]

wl -g [low high] Specifies a range of pixels to be highlighted in color. The flags ’r’, ’b’ and ’g’ corre-
spond to red, blue and green, respectively. The values low and high are the inclusive
boundaries of the range in units of CT numbers. If the range is not present, then the
off/on state of that color will be toggled. If toggled to on, then the previously used
range will be used. The default ranges for red, blue and green are respectively
[8000,8100], [8200,8300] and [8400,8500]. When ranges, including the gray scale,
overlap, the priority of application is as follows from lowest to highest priority: gray
scale, red, blue and then green.

wl -o Toggles the outline mode. Fifteen pixel values starting at a digital value of 9025 are set
to different color values. The applicatable pixel values are set without consideration of
the zero offset. The initial pixel value can be changed using the outline variable with
the set command. The RGB color values for the different pixels values relative to the
first value are as follows:

9 February 2008 41

XPIC(1) XPIC(1)

0 255,0,0
1 0,255,0
2 0,0,255
3 255,255,0
4 255,0,255
5 0,255,255
6 255,128,128
7 128,255,128
8 128,128,255
9 0,64,128
10 128,0,64
11 64,128,0
12 64,0,0
13 0,64,0
14 0,0,64

wl -f Sets pixel values greater than the level plus the window over two to black. This mode
is called the fall mode.

wl -n The highlighting (in red, blue, and green), outline, and fall modes are turned off. This
is known as the normal mode.

smpte Loads a pattern, which resembles the SMPTE test pattern, into the display. Use the
gamma command to sent the gamma value to correct the nonlinearities in the display.

gamma [value] Sets up a gamma table for the display with the specified value. The use of a gamma ta-
ble will not affect the output sent via the halftone command. The command will print
the current value of gamma when no arguments are specified. Use the smpte command
to display a pattern that is used as described in the section below entitled "Gamma Cor-
rection".

zero [value] Sets the offset value subtracted from pixels before reporting values using the cursor and
box commands. The command will print the current value of the offset when no argu-
ments are specified. The use of this command is deprecated in favor of setting the
option zero with set.

re verse [on | off] With no arguments the command changes reverses "the video". The options "on" and
"off" turn the reverse video mode on and off, respectively.

**** HARDCOPY COMMANDS ****

halftone [options] By default, the contents of the canvas are sent to a postscript (PS) printer. The name of
the printer is defined in the environment variable PRINTER. If PRINTER is not found,
the printer named lp is used. The command is also capable of sending PS or encapsu-
lated postscript (EPS) to a file. The following parameters can be used to change the
performance of the command:

width=x
Sets the width of the output to x inches. The default is six inches.

height=x
Sets the height of the output to x inches. The default is six inches.

xo=x

yo=y Sets the position (origin) of the lower left corner of the output to be (x,y) (in
inches) from the lower left corner of the paper. The default position is (1,1).

42 9 February 2008

XPIC(1) XPIC(1)

-p Prints the output in portrait mode. This is the default orientation.

-l Prints the output in landscape mode.

-a Sets the width (height) based on the aspect ratio of the display when only the
height (width) is specified.

-s The status of the command is printed. Note that the values of width, height,
xo, yo, gamma, of, printer, orientation and output location (file or pipe to
printer spooler) are saved between calls to the command.

-f PS or EPS is sent to a file. The default filename is img.eps.

-e The output is sent in EPS format to a file. The xo, yo, and orientation options
are ignored in the EPS mode.

of= file The name of the file to which EPS or PS is saved is set to file. The -f option is
set. The suffix .eps or .ps is added if necessary depending on whether EPS or
PS format is selected, respectively. This option can also be selected without
the of= prefix.

-n The command options are returned to normal. That is, PS is sent to the
printer.

printer=p
Sets the name of the printer to p. The default printer is lp. The -f flag is also
turned off.

printer [name] Without any option, the command prints the name of the printer that the halftone com-
mand uses. With an argument, the name of the printer used by halftone is set to name.

write [!]file[.mi] [-s|8|t]
Write the currently displayed canvas into the mi-file named file . The suffix .mi is
added to the name if necessary. The option will not overwrite existing files unless an
exclamation point (!) is used as a prefix to the file name. The -s flag causes the annota-
tion to be sent along with the image. In this mode, only an eight bit version of the
image is saved. Use a window/level setting of 256/0 (or 256/1024 if the -s flag is used)
to see the same image when it is displayed. The -8 flag writes the eight-bit buffer asso-
ciated with the image to the specified file. The -t flag writes the eight-bit buffer associ-
ated with the image to the specified TIFF-file. The suffix .tif is added to the name if
necessary.

annotate [-p x y] text

annotate -c

annotate -w [!] file
The screen is annotated with text. To position the text, first execute the annotate com-
mand. Then move cursor into the canvas to the point that you want the lower-left point
of the text to be displayed. Finally, depress the left mouse button. A newline can be
entered with a \n. Leading and trailing spaces can be entered with a _. If the -p flag is
present, the next two arguments are the location of where the text will be placed. The
-c flag indicates that all the annotation should be cleared. -w flag creates a file named
file that will contain an ASCII representation of the present state of the annotation. The
file can be sourced with the source command to recreate the annotation at a later time.

lc [options] By default, the contents of the center row are plotted in an xplot window. The com-
mand is also capable of sending other lines or columns to xplot or to a file. The follow-
ing parameters can be used to change the performance of the command:

-c Pick up data in a column instead of a row.

-l Pick up data in a row. This is the default mode.

9 February 2008 43

XPIC(1) XPIC(1)

-d Pick up row or column from the last deposited position of the cur-
sor. Note that a cursor position has to specified by depressing the
left mouse button when the cursor is positioned over the canvas.

-D Pick up row and column from the last deposited position of the cur-
sor. Note that a cursor position has to specified by depressing the
left mouse button when the cursor is positioned over the canvas.

-? Print out a help message.

of= file[.da] The line or column is stored in the file named file[.da]. The .da
suffix is added if required. If file is set to xplot, the output is plot-
ted directly in an xplot window. The program xplot has to be run-
ning before the call to lc.

x=x The starting point of a row is set to x if in row mode. In this mode,
the default starting position is the first point (actually point zero) of
the row. In column mode, the column is set to x .

y=y The starting point of a column is set to y if in column mode. In this
mode, the default starting position is the first point (actually point
zero) of the column. In row mode, the row is set to y .

n=n The number of points in a line or column is set to n. By default all
the points from a line or column are read from the starting point.

**** IMAGE MANIPULATION COMMANDS ****

clear [-a] Erases the canvas or subcanvas. The -a option causes the reset and annotate -c com-
mands to be invoked so that the complete display is cleared and the annotation is also
cleared; the option stands for "all".

flip [x | y] Flips the image in the current subcanvas about either the x- or y-axis. The x-axis is the
default axis of flipping.

magnify [-c] [-x|-y]
By default, the centered image of size one half of the horizontal and vertical extents of
the subcanvas is magnified by a factor of two. The resulting image is inserted into the
subcanvas. With the -c flag, the image is magnified about the last deposited position of
the cursor. The cursor location must be in the subcanvas. Bicubic interpolation is used
for the magnification. The command can be repeated multiple times for higher magni-
fication. With the -x flag, magnification is performed only in the horizontal (x) direc-
tion. With the -y flag, magnification is performed only in the vertical (y) direction. The
magnification can be performed automatically if the automagnify option is set via set.
There is no way to specify horizontal only or vertical only automatic magnification.
Pixel replication is used instead of bi-cubic interpolation if the replicate variable is set
with set. The -c flag can be used in conjunction with the -x and -y flags.

transpose Transposes the image in the current subcanvas. The subcanvas must be square.

offset o The pixels in the image in the current subcanvas are offset by o.

scale s [c] The pixels in the image in the current subcanvas are scaled by s. If c is specified, then
the scaling will take place about this value. In other words, the value of c is subtracted
before the scaling and then added back in after the scaling is performed. The value of s
can be negative.

invert The pixel values in the present subcanvas are inverted. The inversion takes place about
the current value of the level.

44 9 February 2008

XPIC(1) XPIC(1)

measure [options]
Distances and angles are measured by pushing the "m" button on the panel. If
two/three cursors are deposited, then distance/angle is measured. Cursors are deposited
at the end points and previous graphics is erased. The command measure is used to to
change the performance of the command:

dx=x Sets the x (horizontal) pixel size to x. The default value is 1.00. This variable
can also be set with the set command.

dydx=x
Sets the ratio between the y (vertical) and x (horizontal) pixels to x. The
default value is 1.00. This variable can also be set with the set command.

-l Draw a line between the two or three deposited cursors.

-c Don’t draw cursors at the locations of the two or three deposited cursors.

-e Do not erase all annotations and lines before drawing new lines or cursors.

-r Reset the variables used in this command to their default values.

**** MISCELLANEOUS COMMANDS ****

status [-a] Prints the following information in the tty window: the current working directory; the
type of image files; the name of the image file the number of images in the file, and the
current image displayed, if the a file is open; the current window and level; and the
upper left origin and the horizontal and vertical widths of the subcanvas. If the -a flag
is present, then additional information, which is relevant primarily for debugging, is
also printed. Suffixes are added to the window and level when the fall and range modes
are used. The suffix /F is used with the fall mode. The suffix /R=(low,high) is used
with the range mode.

headers [first last]
Prints the images headers, where the header consists of the image number, the x- and y-
sizes of the image, and the image label. If first and last are specified, then the headers
are printed for this range of images.

help [command] With no arguments, a list of the available commands will be printed. Otherwise, the
syntax of command will be printed. command can be minimally abbreviated.

pwd Prints the name of the current working directory in the tty window.

refresh Re-builds the display in case the display gets corrupted. This means that the image is
resent to the display buffer and the look-up-table used for window/level is rebuilt.

source file The contents of file are sourced (read) and treated as commands. The source com-
mand itself can be nested. The name of the sourced file will be printed along with the
normal prompt, xpic> .

pause [message] The keyboard is locked until the user enters a carriage return. The command is useful
when it is included in files that are sourced with the source command. The rest of the
command line can be used as a message.

#[comment] A line beginning with a sharp, "#", indicates that the line is a comment. The sharp is
most useful in files that are sourced with the source command.

log [!]file The commands entered to xpic will be saved in a file named file. Logging will con-
tinue until the end of the session. Commands entered from a sourced file (see the
source command) are prepended with a "#[name]:" where name is the name of the
sourced file. The option will not overwrite existing files unless an exclamation point (!)
is used as a prefix to the file name.

9 February 2008 45

XPIC(1) XPIC(1)

![command] If the line contains just a single exclamation point, then csh(1) will be invoked in the tty
window. When the shell is exited, then normal operation of xpic will continue. If a
command follows the exclamation point, then the command will be passed to sh(1) via
the system(3) command and executed. The output of the command will be displayed in
the command window. It is even possible to invoke an editor with a command like "!vi
file".

ls[args] The command line is passed to sh(1) via the system(3) command and executed. This
command is a shorthand for !ls [args].

expression exp The mathematical expression given in the string exp is evaluated and the result is
printed in the tty window. The operations of addition (+), subtraction or unary minus
(-), multiplication (*) and division (/) are permissible. The priorities of the operators
follows normal programming convention (for example like Fortran or C). The expres-
sion can contain parentheses to change the order of evaluation.

exit

<ctrl>-D Terminates program execution. With exit, confirmation of termination is requested.

quit Synonym of exit. port [on | off] With no arguments the command prints the status of
the connection. "closed" means that xpic is not listening for connections. "waiting"
means that xpic is listening but that an external program has not yet hooked up. "active"
means that communication is taking place with an external program. The option "on"
will turn the port on so that xpic will start to listen. "off" turns off the port. You cannot
turn off a connection if the port is "active".

set option value

set option

set Sets the values of options (parameters) that are used by other commands. If the com-
mand is used without any command line arguments, then all the options and their val-
ues will be displayed. There are two types of options: boolean and valued. The valued
options are either integer or floating point. Boolean options are either on or off. The
state of the option is specified and displayed with the prefix "no". For example, the
option autoreset enables automatic reset mode and noautoreset disables the option.
Valued options take values such as integers and strings from the command line. Some
of the options can be abbreviated. For example, autoreset and noautoreset are abbrevi-
ated with ar and noar, respectively. Some options are read-only, meaning that they
cannot be set; these options are prefixed with an asterisk (*) when they are displayed.
The following options are available, where their abbreviations and negative forms (in
the case of boolean options) are also shown:

autoreset,ar,noautoreset,noar
Enables automatic calling of reset when a file is opened with open. The
default is autoreset.

autoclear,ac,noautoclear,noac
Enables automatic clearing of the subcanvas when an image is loaded. The
default is noautoclear. The use of this option can significantly degrade the
performance of cine.

autowl,awl,noautowl,noawl
Enables automatic setting of the window/level after an image is loaded. The
default is noautowl.

automagnify,am,noautomagnify,noam
Enables automatic two-times magnification of an image when it is loaded.
Thee the magnify command for additional details. The default is noautomag-
nify. It is useful to use the autoclear function with the automagnify function if
the source images are smaller than the subcanvas.

46 9 February 2008

XPIC(1) XPIC(1)

wltrack,wl,nowltrack,nowl
Enables tracking of the window/level sliders. Tracking means that the window
and level will be updated as the sliders are moved. Without tracking, the win-
dow and level are updated only after the slider controls are released. The
default mode of operation is enabled if the X11 client and server are the same
computer. If not, too much data has to be transmitted across the network and
the tracking has too much lag.

replicate,rep,noreplicate,norep
Tells the magnify command to use pixel replication instead of bi-cubic inter-
polation.

boxred,br,noboxred,nobr
Indicates that box cursors should be drawn in red. Otherwise, the lines of the
box are XORed into the image.

roiellipse,re,noroiellipse,nore
Sets type of roi - box or ellipse - with roi command. The default is noroiel-
lipse.

roiminimum,rmin
Pixels below this value are excluded during the calculation of ROI statistics
using the roi command. This is a binary value and is not subjected to offset by
the zero value. It is therefore recommended that the offset be set to zero when
using this option. The default value is zero.

zero,zero
Sets the value subtracted from all pixel values to value. The default value is
1024. The command zero can also be used to affect this value.

scrollx,scx
Sets the x (horizontal) value of the scroll command.

scrolly,scy
Sets the y (vertical) value of the scroll command.

dx,dx Sets the x (horizontal) pixel size for the measure command.

dydx,dydx
Sets the ratio between the y (vertical) and x (horizontal) pixel sizes for the
measure command.

skip,sk Sets the increment between images in the + (next) and - (previous) commands.
The value also works for the corresponding buttons (+ and -) on the panel.
The default of the argument is one. A value of zero disables the commands.
Negative values can be used.

outline,ol
Sets the initial digital value of the pixels to be used in the ouline mode. If this
value is changed when the outline mode is active, then the refresh command
has to executed to invoke a new value of the offset. See the wl command for
additional information.

gamma,gamma,read-only
Displays the valaue of the gamma-correction last set in the gamma command.

panel Prints information about the buttons and sliders in the panel.

mouse Prints information about the use of the mouse.

CONTROL PANEL
A control panel is available to execute commands and for displaying status information. The following
functionality is provided:

9 February 2008 47

XPIC(1) XPIC(1)

W (Slider) (Window) Sets the window width. The slider is tracked if the wltrack option is set with
the set command. The window can also be set with the wl and window commands.

L (Slider) (Level) Sets the level of the window/level. The slider is tracked if the wltrack option is
set with the set command. The level can also be set with the wl and level commands.

- (Minus) Invokes the - command to display the previous image in a file.

+ (Plus) Invokes the + command to display the next image in a file.

u (Up) Invokes the scroll command with the value of (0,y), where y is the last vertical
scroll value. The horizontal scroll value is preserved.

d (Down) Invokes the scroll command with the value of (0,-y), where y is the last vertical
scroll value. The horizontal scroll value is preserved.

l (Left) Invokes the scroll command with the value of (x,0), where x is the last horizontal
scroll value. The vertical scroll value is preserved.

r (Right) Invokes the scroll command with the value of (-x,0), where x is the last hori-
zontal scroll value. The vertical scroll value is preserved.

m (Measure) Invokes the measure command.

F/C (Fine/Coarse) Sets the range of the window/level sliders to be a sub-set or complete
range of values.

Browse Launches the GUI browser in the current working directory.

e- (Environment Decrement) Changes the current environment to the preceding environ-
ment. If the current environment is the lowest possible environment, the current envi-
ronment is set to the highest possible environment. See the environment command for
further details regarding environments.

e+ (Environment Increment) Changes the current environment to the next environment. If
the current environment is the highest possible environment, the current environment is
set to the lowest possible environment. See the environment command for further
details regarding environments.

Env Display Displays the current environment in the format e#, where # is the number of the current
environment.

Quit Quits xpic, with confirmation.

Te xt Message Various commands display information in this field. When the cursor is moved, the
location of the pixel and the value of the pixel are displayed. When a box cursor is
used, and the left mouse button is pressed, the mean and standard deviation in the ROI
are displayed.

GUI BROWSER FEATURES
The following are descriptions of the components of the GUI browser, their function, and their use.

Go To Button
This button maintains a history list of previously visited directories, without duplication. Right
click to access the list. Left clicking selects the button’s default location, the user’s home direc-
tory.

Go To Path
Enter a path on this line and press enter to redirect the browser to another directory.

Current Folder
Displays the folder path that the file browser is listing.

File List
This pane is the central object of the file browser. It contains a list of files and directories con-
tained in the current folder. The files and directories can be accessed by highlighting them and

48 9 February 2008

XPIC(1) XPIC(1)

pressing the open button. If the browser is not in multiselect mode, double-clicking the file or
directory is equivalent to pressing the open button.

File Type
This selector allows the user to apply one of three filters to the files listed in the File List. The user
can select *.mi to display only files with an "mi" extension, *.lm to display only files with an "lm"
extension, or All Files to display all files.

Stay This option controls the behavior of the browser when the open action is taken. If this option is
selected the browser window will remain open when a file is opened from the browser. If it is des-
elected the browser will automatically close when a file is opened from within the browser. This
option is selected by default.

Environment
This menu is accessible by right clicking. Users are given a choice of Env 1 through Env 10.
Selecting one of these will cause files opened by the browser to be opened into the corresponding
environment. Left clicking this menu selects the default option, Env 1.

File Filter
This field enables the user to enter a custom file filter. The filter entered here governs the contents
displayed in the file browser. The filter consists of a string containing regular alphanumeric char-
acters and punctuation, and also shell style wildcard characters. These wildcard characters are "*
? [] ˆ." The * character is expanded to indicate any string of non-wildcared characters, including
a null string. The ? character is more restrictive. It indicates any single non-wildcard character.
The [and] characters can be used in conjunction with the ˆ character to indicate a range of char-
acters to include or exclude in matching. Putting a sequence of characters in square braces will
cause them to be considered in matching. Surrounding the same string, preceded by the caret,
with braces will cause those characters to be excluded from matching. Presing enter or tab applies
the filter. Entering no text applies the filter *.

Examples With the following list of files, the results of applying some filter strings are shown.

file1.mi
file2.mi
file3.mi
IMAGE1.mi
IMAGEB.mi
test.lm

Filter: *.lm
Results:
test.lm

Filter: *[123]???
Results:
file1.mi
file2.mi
file3.mi
IMAGE1.mi

Filter: [ˆf]*
Results:
IMAGE1.mi
IMAGEB.mi
test.lm

9 February 2008 49

XPIC(1) XPIC(1)

Auto Open
When this option is selected, upon opening a file the first image stored in in it is automatically dis-
played in xpic ’s display window. This option is selected by default.

Show Hidden
Selecting this option causes hidden files (files starting with a period) to be displayed. By default
they are not displayed. If this option is not selected these files will not be considered for matching
to filters.

Multiselect
If this option is selected the browser will allow the user to select multiple files for opening. In this
mode of operation the double-click feature is disabled. If no files are selected in this mode of
operation the open button will be disabled. This option is disabled by default.

The first file opened under this option will be opened into the environment specified on the Envi-
ronment menu. Subsequent files will be opened into subsequent environments. When the maxi-
mum environment is reached no further files are opened. A warning is displayed indicating that
not all selected files were opened.

COMMAND LINE OPTIONS
The following options are available on the command line to modify the performance of xpic. The options
can be minimally abbreviated.

[˜[user]][/dir1/.../dirn]file[.mi] ...
The file(s) are opened and the first image in the first file is displayed. Shell style wild-
card expressions and file lists may be used. This command line option behaves simi-
larly to the open command in xpic’s tty window, with the following differences: mi
type files are the default. Therefore lm files cannot be opened in this way. Also, the
=arg option confuses the command parser and therefore cannot be used. It is necessary
to escape wildcard characters with a backslash or single quotes for xpic to process
them. For a full description of the rest of the functionality of this command see the
open command documentation, above.

xw=width Set the width of the canvas to width. The default value is 512. The minimum size is
256.

yw=height Set the height of the canvas to height. The default value is 512. The minimum size is
256.

size=s Sets the size of the canvas to s by s . This option is the same as using xw=s and yw=s.

xp=x Display the frame containing the canvas, panel and the tty with its upper left corner at
horizontal position x. The default value is 0.

yp=y Display the frame containing the canvas,panel and the tty with its upper left corner at
vertical position y. The default value is 0.

ro ws=r The number of row in the tty window will be set to r. The default value is 8.

window=w The initial window setting will be set to w. The default value is 256.

level=l The initial level setting will be set to l. The default value is 0.

-o The panel with the sliders for the window and level is not displayed.

-F do not fork off (detach) a copy after invocation. This option is used in conjunction with
the debugger, dbx(1) or gdb(1).

-c By default, the cursor reporting is enabled. This flag changes the default mode to no
reporting. Use the cursor command to enable it.

-z Normally the program runs in a CT mode in which 1024 is subtracted from all pixel
values. When this flag is set, 1024 will not be subtracted. This is equivalent to using
zero=0 on the command line or running the internal command zero 0.

50 9 February 2008

XPIC(1) XPIC(1)

zero=z Sets the value subtracted from all pixel values to z. The zero and set commands can
also be used to set the value when the program is running.

bits=b By default, only 14 bits in each pixel are used. This option can be used to change the
number of bits to b. Pixel values large than 2ˆbits-1 will be set to this threshold.

-p Enables communication from an external program through a port. Port communication
can also be enabled with the port command (see above). See below for details on
external program communication.

-a enable the xpic_attach() call (see below) and allocate the shared memory required for
the call.

port=s Specifies the socket to be used for communication with external programs. The default
number is listed below in the INTERPROCESS COMMUNICATION section.

-C Enables pseudocolor mode. The look up table is filled with 64 colors. With the default
value of zero=1024, you get all 64 colors using window=64, level=-992, and gamma=1.
The colors are somewhat randomized so that adjacent values are shown in distinct col-
ors.

printer=name Send the output to the printer named name instead of the default printer named lp.

title=t The title in xpic’s frame is set to t instead of the default "xpic - revised: date".

-s Separates the tty window and the optional control panel from the canvas.

-l Change the file type to LM high energy.

-Z Change the file type to GZMI, gzipped MI file.

gamma=value[/host]
Sets the default gamma value. If /host is specified, then the gamma value will be set
only if you are displaying in the specified host. It is possible to specify more than one
of these options in the files ˜/.xpic and .xpic. Specifying gamma without a hostname
overrides a setting with a hostname if the former appears after the latter.

Xview’s command line resource arguments (see xview(1)) are also available. A useful option is ‘ -display
which can be used to change the name of the X server.

-S No not use the MIT shared memory extension for X11 under any circumstances. This
option is need if xpic is run through SSH.

DEFAULTS
The internal two routines allow for three default mechanisms to specify options. The first method is to cre-
ate a file .xpic in your HOME directory. This file is also known as ˜/.xpic. Or the file .xpic can be created
in the directory from which the program is invoked. In them, one can place options and flags that will be
used before parsing your command line. Lines beginning with a ’#’ are considered to be comments. A ’#’
also marks the beginning of a comment anywhere else on an input line. Parsing of arguments ends when
either an end-of-file is reached or when the line beginning with the string "//" is found. Te xt found in the
file after the line beginning with "//" are keyboard commands that will be processed before giving you
access to the display.

As an example, consider the case where the user wishes to to set the size of the canvas to 640 by 320. Also
the user wants to enable the automagnify feature. The format for the file ˜/.xpic would be:

this is a comment
xw=640
yw=320 #this is another comment
//
set automagnify

The second method to set default options is to use the environment variable XPICARGS. The format is the
same as the input command line.

The command line options set in the previous example can be specified using the following procedure:

9 February 2008 51

XPIC(1) XPIC(1)

For /bin/sh:
$XPICARGS=’xw=640 yw=320’
$export XPICARGS

For /bin/csh
$setenv XPICARGS ’xw=640 yw=320’

There is no way to set tty commands in XPICARGS. The order of parsing is ˜/.xpic, .xpic, XPICARGS, and
finally the command line. The flag -@, if present on the command line, will disable the use of the default
mechanisms.

GAMMA CORRECTION
Display monitors usually have a nonlinear response to input voltages. Correction is required in order to
faithfully display an image. The correction of the nonlinearities has become to be known generically as
gamma correction which follows from the name of the variable in the usual equation used to model the
nonlinearities. A command called gamma is provided to set amount of correction. The following proce-
dure should be followed to determine the gamma correction for a specific monitor.

Display the image using the the smpte command.

Set the window width to 100 using width 100 .

Set the level according to modality mode: for the CT mode (without the -z option) use level 0 ; for the MRI
mode (with the -z option) use level 1024 .

Set gamma until the 0/5% and 95/100% regions are visible. The value of gamma is set with the gamma
command, i.e., gamma 2.3 . The 0/5% region is to the right of 0% square and is marked 0/5%. The
95/100% region is to the left of 100% square and is marked 95/100%. The gamma values are a function of
ambient light and contrast/brightness settings. The gamma values are also machine-dependent.

Install gamma values in HOME/.xpic as follows
gamma=v1/machine1
gamma=v2/machine2

etcetera, where vi, i=1,2 is gamma for machine name machinei.

A gamma can be set for laser (postscript) printer using the gamma option with the halftone command.
Apple laserwriters need gamma=1 at present.

What follows is additional information about gamma correction which is reprinted (without permission)
from J. G. Och, G. D. Clarke, W. T. Sobol, C. W. Rosen, and S. K. Mun, "Acceptance testing of magnetic
resonance imaging systems: report of AAPM nuclear magnetic resonance task force no. 6," Medical
Physics 19(1), pp. 217-229, 1992, which is adapted from J. E. Gray, K. G Lisk, D. H. Haddick et al, "A test
pattern for video displays and hard-copy cameras," Radiology 154, pp. 519-527, 1985.

Clean the visual display with an appropriate cleaner and soft cloth. Include the front and back surfaces of
any autoreflective screens, and the front surface of the cathode ray tube (CRT). Reduce the room illumina-
tion to the normal viewing level. A room illuminance level of 5 to 10 lux is recommended.

Display the Society of Motion Picture and Television Engineers (SMPTE) digital test pattern. Adjust the
window width to just encompass the range of numbers comprising the SMPTE test pattern. Adjust the win-
dow lev el to either the lower or middle value of the window (depending on the particular software), so that
the entire test pattern is visible.

Turn the brightness and contrast controls completely counterclockwise. Increase the brightness level until
the video master pattern is just visible on the display. Increase the contrast level until the image is bright
and clear, and, the 95% and 100% patches are clearly separated. Do not increase the contrast to the point
where the alphanumerics are blurred, smeared, or streaked on the display.

Examine the image. The 5% patch should be just visible inside of the 0% patch. The area of the 0% patch
should be almost black with raster lines just barely visible. The 95% patch should be visible inside the
100% patch. The alphanumerics should be sharp and clear.

Note that some video monitors do not have adequate "black clamp". This means that the darker areas of the

52 9 February 2008

XPIC(1) XPIC(1)

image may increase in brightness as the contrast is increased. In this case, the brightness level will have to
be decreased as the contrast is increased.

COMMUNICATING WITH AN EXTERNAL PROGRAM
Introduction

There are a number of circumstances where you might want to talk to xpic from an external program. The
purpose of this section is to describe a library of functions that allow communication with an external pro-
gram.

Before you dive into the functions, you will have to understand some of the structure of xpic. There are
actually two image buffers. The first buffer contains the 16 bit image data. The second buffer is an 8 bit
display area. What you see as the user is the 8 bit display. The data in the 16 bit area is mapped through
the window/level look-up-table to generate the 8 bit data. A key is that the 8 bit area is only updated upon
command. In this library the two commands that update the 8 bit display are called xpic_load() and
xpic_wl(). The steps to update the display are first to write to the 16 bit area with the xpic_write() com-
mand and then to update the 8 bit display with the xpic_load() or xpic_wl() commands. If shared memory
is available on your system and xpic is running on the same host as your application, then you can read
(write) directly from (to) the 16 bit buffer. The xpic_attach() function gives you this access.

Use
xpic has an option to tell it to allow communication via an external port. The option is called -p. Note that
more than one copy of xpic can be run at the same time. Normally, only one copy can use the -p flag. The
command port can also be used to control access. Without options, the command will report the status of
the port and external programs connected to xpic. The command also supports the options on or off to
enable or disable port access. The port command line option can be used to change the socket through
which communications will take place. By using different values, multiple copies of xpic can be run, all
with active open ports. The port command (not the command line option) also displays the socket number
used for interprocess communication.

Summary of Routines
The rest of this note contains a section for each of the routines in the communication library. The file
xpic_port.h should be included to obtain prototypes for the routines. Here is a summary of the routines:

Name Summary
xpic_annotate display annotation (text)
xpic_attach attach the 16 bit shared memory
xpic_clear clear the screen
xpic_close close the connection
xpic_command run command in tty window
xpic_cursor return the status of the cursor
xpic_debug enable debugging the communication’s link
xpic_detach detach the 16 bit shared memory
xpic_exit causes xpic to terminate execution
xpic_line draw line from the "current point"
xpic_load transfer the 16 bit image to the display
xpic_message send a message to the tty window
xpic_mouse wait for specified mouse button to be pushed
xpic_move set the "current point" for line drawing
xpic_open open the communication channel
xpic_read read a line of the display
xpic_status return status
xpic_test test the communication channel
xpic_transpose transpose rows & columns for reading and writing
xpic_wl set the window and level
xpic_write write a line of the display

9 February 2008 53

XPIC(1) XPIC(1)

xpic_annotate
Syntax:

void xpic_annotate(x,y,s)
int x,y;
char *s;

Description: The text contained in s is written out starting at location (x,y). No check is made to make sure
that the text will fit on the screen. A maximum of 132 characters can be written per call.

xpic_attach
Syntax:

(unsigned short) *xpic_attach()

Description: The shared memory address of the 16 buffer used by xpic is returned. Error messages will be
printed if shared memory is not available on your system or if the xpic that you are connected to is not run-
ning on the local machine. The user can read and write at will into this memory. Note that when writing,
the contents are not visible until xpic_load() or xpic_wl() are run. The size of the buffer can be obtained
with the xpic_status() function. The buffer is organized by concatenating the rows with the top row being
first. It is the user’s responsibility to make sure that access to the buffer is confined to legal addresses. The
maximum value that can be written to the buffer is given by the value mi_max that is returned by xpic_sta-
tus(). It is also the user’s responsibility to make sure that no pixels exceed this value. xpic will probably
core dump if you write a value larger than the maximum value. This is because the look-up-table only has
mi_max+1 entries and pixel values are not checked for being in the proper range when the 16 bit buffer is
converted to 8 bits. Communication normally takes place asynchronously because commands are sent to
xpic and no status confirmation is returned. The exceptions are commands that explicitly ask for informa-
tion such as xpic_status() and xpic_mouse(). You hav e to be aware of the asynchronous nature of the
communication when using the shared memory. As an example, if you first clear the buffer with
xpic_clear() and then write to it. It is possible that xpic_clear() will not be finished before you start writ-
ing. In this case, you might issue a xpic_status() command before writing.

xpic_clear
Syntax:

void xpic_clear()

Description: The 8 bit and 16 bit image areas are both cleared (set to zero).

xpic_close
Syntax:

void xpic_close()

Description: The communication channel that was previously opened with xpic_open() is closed. The
channel will also be closed automatically when the external program exits.

xpic_command
Syntax:

void xpic_command(cmd)
char *cmd;

Description: The zero-terminated text that is contained in cmd is run in the tty window as a normal com-
mand. The following commands cannot be run with this routine: source, pause, exit, log, cd, ls, cine, and
commands beginning with an exclamation point (!). Note that xpic’s concept of the current directory is not
the same as your program. Therefore, commands that reference specific files in Unix’s hierarchy (like
open(2)) should use absolute path names.

xpic_cursor
Syntax:

void xpic_cursor(type,x,y,xw,yw)

54 9 February 2008

XPIC(1) XPIC(1)

int *type,*x,*y,*xw,*yw;

Description: The state of the cursor is returned by this command. The variable type returns a value of zero
if the cursor is turned off (via xpic’s command "cursor off"), a value of one for a crosshairs (via "cursor on"
& "box off"), and a value of two for a box cursor (via "cursor on" & "box on"). The variables x and y con-
tain the location of the crosshair or the center of the box the last time the left mouse button was depressed.
The variables xw and yw contain the dimensions of the box cursor.

xpic_debug
Syntax:

void xpic_debug(level)
int level

Description: This command sets the level of debug messages that are printed out on xpic’s text window. A
level of zero means no messages. Other valid levels are one and two. This command is not intended for
general use. The level is reset to zero every time xpic_open is called.

xpic_detach
Syntax:

void xpic_detach()

Description: The memory previously attached with the xpic_attach() command is released. It is not too
clear if this command is necessary. The xpic_close() and xpic_exit() functions automatically call
xpic_detach().

xpic_exit
Syntax:

void xpic_exit()

Description: Causes xpic to terminate execution.

xpic_line
Syntax:

void xpic_line(x,y)
int x,y

Description: Draw a line from the "current point" to (x,y). The "current point" is set to (x,y) after the line is
drawn. xpic_move can also be used to set the "current point". The line is boolean or’ed with the informa-
tion contained in the canvas.

xpic_load
Syntax:

void xpic_load()

Description: The contents of the 16 bit image buffer are transferred to the 8 bit image area.

xpic_message
Syntax:

void xpic_message(s)
char *s

Description: The message contained in s is sent to xpic’s text window. The maximum length of the mes-
sage is 132 characters.

xpic_mouse
Syntax:

int xpic_mouse(b)
int b

9 February 2008 55

XPIC(1) XPIC(1)

Description: The calling program is blocked until a specified mouse button is depressed. The button, b, can
be zero, one or two, corresponding to the SELECT, ADJUST, and MENU mouse buttons, respectively. For a
right-handed mouse, these buttons normally correspond to the left, middle and right buttons, respectively.
If the button, b, is three, then any mouse button can be pushed. The number of the depressed mouse button
is returned.

xpic_move
Syntax:

void xpic_move(int x,int y)

Description: Sets the "current point" for line drawing to (x,y). The command xpic_line draws the actual
lines.

xpic_open
Syntax:

int xpic_open(host,err)
char *host
int err

Description: A communication channel is established with the xpic running on the host specified in host. If
host is NULL or has zero length (i.e, xpic_open(NULL,err) or xpic_open("",err)), then the xpic running on
the present machine will be used. xpic has either to be invoked with the -p flag or to have received the port
on command in order to allow the communication channel to be opened. The routine xpic_open has to be
called before any other library calls can be made. Because the host can be specified, it is possible to send
images across the the network thus creating a poor-person’s X-window system. The routine will print an
error message and exit if the connection cannot be made if err is zero. Otherwise, the routine returns zero
for a successful open and one for a failed open. If another external program is already talking to xpic, then
your program will hang until the other program issues a xpic_close(). The host can be optionally appended
with the string :s, where s is the socket number through which communications will take place. The default
socket number is listed in the INTERPROCESS COMMUNICATION section of this manual. The number s
should match the number given with the port command line option. These features allow multiple copies
of xpic to be run at the same time, all with active open ports. If the host, host, is of the form :s, then com-
munications will take place with the xpic running on the local host using socket number s.

xpic_read
Syntax:

int xpic_read(x,y,data,n)
int x,y,n
unsigned short *data

Description: A line of 16 bit image data is transferred into data. The line number is given by y, where the
zero’th line is the top line in the display. A line is either a row or column in the data array. The choice of
row or column is set with the xpic_transpose command. Pixels beginning at column position x are read
where the first column is column zero. A maximum of 1024 pixels can be read. The call returns the actual
number of pixels read. If the values of x or y are out of the canvas a value of zero will be returned. If there
are insufficient pixels on the specified line, then only the available pixels will be transferred. The command
is relatively slow because of the length of the packets that are sent across the socket that is used for commu-
nication. The function xpic_attach() can be used for faster access to the 16 bit buffer.

xpic_status
Syntax:

void xpic_status(x,y,window,level,mi_max)
int *x,*y,*window,*level,*mi_max

Description: Key parameters that describe the status of xpic are returned. x and y are the number of col-
umns and rows, respectively, in the image canvas. window and level are the window and level, respectively.
mi_max is the maximum value that can be contained in a pixel.

56 9 February 2008

XPIC(1) XPIC(1)

xpic_test
Syntax:

int xpic_test()

Description: This command sends a test packet to xpic to verify the communication channel. The routine
returns zero for a passed test and one for a failed test.

xpic_wl
Syntax:

void xpic_wl(window,level)
int window,level

Description: The window and level are set to window and level, respectively. The 8 bit image area is also
updated.

xpic_transpose
Syntax:

void xpic_transpose(dir)
int dir

Description: This command determines the direction that a vector of data is written. The value of dir equal
to zero and one specifies writing to rows and columns, respectively. The value set by this command stays
in affect until the next call to it. The command xpic_open resets dir to zero.

xpic_write
Syntax:

void xpic_write(x,y,data,n)
int x,y,n
unsigned short *data

Description: A line of 16 bit image data is transferred from data to xpic. The line number is given by y,
where the zero’th line is the top line in the display. Pixels beginning at column position x are written where
the first column is column zero. A line is either a row or column in the data array. The choice of row or
column is set with xpic_transpose(). A maximum of 1024 pixels can be written. If there are insufficient
pixels on the specified line, then only the available pixels will be transferred. The command is relatively
slow because of the length of the packets that are sent across the socket that is used for communication.
Data that are larger than mi_max (see xpic_status()) are set to mi_max before being stored. The effect of
this command will not be seen on the 8 bit display until a xpic_wl() or xpic_load() is issued. The function
xpic_attach() can be used for faster access to the 16 bit buffer.

FILES
libxpic.a

actual name of the library xpic.a. The library can be accessed with -lxpic when using a C com-
piler or the linker. When compiling on Solaris, the following additional libraries are required -lgen
-lsocket -lnsl.

˜/.xpic

.xpic initialization (startup) files.

ENVIRONMENT
PRINTER

the default name of the printer that the halftone command uses. If not found, the printer named lp
is used.

XPICARGS
contains command line arguments.

9 February 2008 57

XPIC(1) XPIC(1)

DISPLAY
contains the name of the default X server. The default can be overridden with xview’s (xview(1))
-display command line option or resource. xpic examines the name of the server to see if the
server and the client are running on the same machine. In this case, MIT’s shared memory exten-
sion to X11 is used (if available) to speed up certain operations (window and level in particular).
Information following a colon (:) in the variable is ignored.

HOME contains shell’s concept of your home directory. The cd command without arguments will change
directories to HOME.

INTERPROCESS COMMUNICATION
The program uses a number of sockets for interprocess communication. It might be necessary to change
the socket numbers if the program conflicts with other programs that utilize interprocess communication.

8125 Default socket that is used by port connections via the xpic.a library. The number can be changed
with the port command line option.

SEE ALSO
cplot(1), lc(1), plot3d(1), qplot(1), xplot(1), xview(1), dami(1), armi(1), crcplot(3), parse(3),
parse_mi(3)

AUTHOR
Carl R. Crawford is the original author.

Hara Levy produced the name xpic.

Jim Kohli designed the program’s icon.

Owen Dake and Paul Granfors provided the core of the halftone command; their code was based on code
written by Phillip Ward.

Greg Larson wrote the code for the smpte command, and implemented the -x and -y flags for magnify.

Matthew Hirsch provided the colormap for the outline mode in the "wl" command, and the GZMI, gzipped
MI file, open functionality, wrote the GUI browser, added buttons to the command pane, added environ-
ment control enhancements, open command enhancements, and updated the cine command and documenta-
tion. His work is described in the following reports:

Hirsch, M. "Running XPIC and XPLOT under Microsoft Windows using Cygwin," Corporate
Imaging Systems Technical Report 03-27, Analogic Corporation, August 29, 2003.

Hirsch, M. W., "XPIC imaging utility graphical user interface file browser and other enhance-
ments," Corporate Imaging Systems Technical Report 03-24, Analogic Corporation, August 20,
2003.

Ibriham Bechwati provided the core code for cine command frame skipping.

BUGS
xpic does not always run correctly on 8-bit displays, especially when there are other big users of the col-
ormap.

Hosts can only be specified by name, not by internet number.

The control frame, when enabled with the -s flag, comes up behind the display panel.

Commands entered in the tty window when running under Linux are echoed twice because of a bug in the
Linux port of Xview. The bug is related to the termios settings of the file descriptor created by the ttysw
component of the Xview library. Xview improperly echos input lines in the ttysw when it takes responsibil-
ity for input canonicalization (often called line dicipline code). This could be bypassed by configuring the
ttysw as a canonical terminal (invoking it with the TERMSW keyword, or setting the ICANON bit in the

58 9 February 2008

XPIC(1) XPIC(1)

c_lflag mode element of the termios structure obtained from ttysw ’s tty file descriptor by tcgetattr). How-
ev er, the xpic keyboard processor would then be responsible for line dicipline code, which is not currently
implemented.

The following command must be initially executed in the tty window when running DEC/UNIX on a
DEC/ALPHA: !reset . Also on the DEC, the scroll bar does not exist for the tty window.

Typing control-C in the command window on some computer systems may cause xpic to die.

Using the environment increment and decrement buttons while a cine command is in progress effectively
pulls the carpet out from under the cine command. The command continues to try to load images, but
attempts fail in the new environment. The message Open A File First or Bad Image Number will be
repeated for as many image slices the cine command had yet to display. Although this error is merely aes-
thetic, it is recommended that users refrain from using the environment increment and decrement buttons
during cine commands.

Right-clicking in the tty subwindow will bring up a context menu designed for use in an XView textsw
application. This artifact allows the user to open, among other things, a text file browsing pane, and find
window. It is possible to crash xpic by executing a find and replace procedure from this find dialog. The
text editor allows the user to open text files, but has not been fully documented. The commands on the edit
menu are functional and may be useful. The use of commands on the history menu can cause erratic behav-
ior. Disabling scrolling may break the link between the keyboard process and xpic. It is recommended that
these "features" not be used, as they are unintentional, undocumented, untested, and may have adverse
affects on the stability of xpic.

Specifying X11 window arguments does not work under Cygwin.

9 February 2008 59

XPLOT(1) XPLOT(1)

NAME
xplot − display plot(5) files in the X environment

SYNOPSIS
xplot [options]

DESCRIPTION
xplot opens a window and accepts plot(5) commands through an inter-process communication socket.
qplot(1), cplot(1) and plot3d(1) automatically connect to this socket. The graphics subroutine plots(3)
(part of crcplot(3)) makes the connection to the program via calls to plot_openpl(3) that is part of
plotcrc(3). xplot and the application program can be on different machines. The window can be resized to
obtain smaller or larger plots. The window can also be converted into an icon in order to save window
space. Functionality is included to copy the graphics to secondary windows and to send graphics to POST-
SCRIPT printers. All user interfacing is done via panels and pull-down menus that will be described below.

MAIN PANEL AND MENU
Optionally, via the -p command line flag, a panel with a number of buttons and a message area is displayed
above the graphics area. The buttons are defined as follows:

Erase The screen is cleared. Calls to erase(3) (part of crcplot(3)) and plot_erase(3) (part of
plotcrc(3)) also clear the screen.

Hard The contents of the main canvas are copied to the POSTSCRIPT printer named lp. A
pop-up window for the properties of the hardcopy can be obtained if the right mouse
button is clicked over the hardcopy button. The name of the printer and the size orien-
tation of the plot can be controlled in this pop-up window. See the section below enti-
tled HARDCOPY OPTIONS for additional details.

Refresh The graphics is redrawn.

Copy Causes the graphics to be copied into a new frame. The copied graphics can be printed
at a later time. See the section entitled COPY OPTIONS for additional details.

Quit The program is terminated.

A pull-down menu is also available when the right mouse button is depressed while in the plotting area. All
of the features provided by the buttons described above are available in the menu. In addition, there is a
menu option called Properties that will bring up the pop-up panel for the hardcopy options.

HARDCOPY OPTIONS
The following options are available in the hardcopy properties pop-up panel:

Printer The POSTSCRIPT output will be sent to the specified printer. The default name is lp.
The environment variable PRINTER can be used to override the default printer name.

Orientation The graphics will be printed in either the portrait, the default, or in the landscape orien-
tation.

Horizontal Offset

Vertical Offset The bottom left corner of the graphics will be offset from the bottom left (bottom right)
corner of the paper by the specified amount in inches when in the portrait (landscape)
orientation. The default offset is one half inch.

Scale The size of graphics is specified as a percentage of the the total amount of space avail-
able on the page after the offsets are subtracted. The default value is 60%.

Buttons named Hard, Erase, Refresh, and Copy also exist in the properties pop-up. They hav e the same
functionality as the buttons described above. The only exception is that the Hard button always prints the
graphics in the main window, not in a copy window. In addition, a Dismiss button is available to dismiss
the pop-up.

COPY OPTIONS
A pull-down menu is available in the windows (there can be more than one) containing copied graphics.
The following options are in the menu:

60 10 September 2002

XPLOT(1) XPLOT(1)

Hardcopy copies the graphics to the POSTSCRIPT printer. The options described above for print-
ing graphics from the main plotting window are used.

Copy copies the current contents of the main plotting window into the window from where
the mouse is depressed.

Properties brings up the pop-up for entering options for hardcopy output.

Refresh the graphics is redrawn.

Quit dismisses the window containing copied graphics.

OTHER FUNCTIONALITY
The postion of the mouse can be extracted in an external program using the mouse() and plot_mouse()
commands that are part of the crcplot(3) library.

COMMAND LINE OPTIONS
The following options are available on the command line to modify the performance of the program:

printer=p Send the output to the printer named p instead of the default printer named lp. The
printer name is not limited to one character.

scale=s When the graphics are sent to the line printer, the graphics will be scaled by s, where
the units are percent. The default value is 60%.

hor=h The horizontal offset of the plot is changed from 0.5 to h inches.

ver=v The vertical offset of the plot is changed from 0.5 to v inches.

-p The panel containing the buttons (Hard, Erase, Copy, Quit and Refresh) will be dis-
played. Instead a pop-up menu, which is invoked from the canvas, is available. The
pop-up panel for the hardcopy options will contain text messages instead of the panel in
this case.

-F The program will not fork off a copy of itself after invocation. This option is used in
conjunction with the debugger, dbx(1).

port=s Specifies the socket to be used for communication with external programs. The default
number is 8124.

The command line frame arguments of xview(1) (-Ws, -Wp, etc.) are supported in their long and flag
forms.

DEFAULTS
The parse routines internal to the program allow for two default mechanisms to specify options. The first
method is to create a file named ˜/.xplot. In it, one can place options and flags that xplot will use before it
parses your command line.

As an example, consider the case where the user wishes to to set the size of the frame that contains xplot to
640 by 320. The correct format for the file ˜/.xplot would be:

-Ws 640 320

The second method to set default options is to use the environment variable XPLOTARGS. The format is
the same as the input command line.

The options set in the previous example can be specified using the following procedure:

For /bin/sh:
$XPLOTARGS=’-Ws 640 320’
$export XPLOTARGS

For /bin/csh
$setenv XPLOTARGS ’-Ws 640 320’

The file ˜/.xplot will be parsed if it exists. Next, XPLOTARGS, will be parsed if it exists. Finally, the com-
mand line is parsed.

10 September 2002 61

XPLOT(1) XPLOT(1)

ENVIRONMENT
PRINTER name of default POSTSCRIPT line printer.

XPLOTARGS additional command line arguments for startup

FILES
/var/tmp/xplot.data

intermediate storage for plots

˜/.xplot command line arguments for startup The flag -@, if present on the command line, will disable the
use of the default mechanisms.

SEE ALSO
qplot(1), xpic(1), plot3d(1), crcplot(3), mouse(3), cplot(1), plotcrc(3), plots(3), plot_mouse(3),
plotps(1), lpr(1), parse_parse(3)

AUTHOR
Carl R. Crawford

Malcolm Slaney wrote sunplot on which xplot is based.

BUGS
The program will die if there is any problems with the lpr(1) that is used to send output to the printer.

62 10 September 2002

PARSE(3) CRC Support Library PARSE(3)

NAME
parse.a − a C support package

SYNOPSIS
#include <parse.h>

struct PARSE_OPTION_TABLE parse_table;
struct PARSE_FLAG_TABLE parse_flag_table;

DESCRIPTION
This section describes functions that are used to support development of C language programs. The pri-
mary purpose of the functions is to support the parsing (hence the name of the library) of the command
line. The parsing functions are described in parse_parse(3). The key parsing routine is called
parse_basic(3), which uses the global structures parse_table and parse_flag_table.

Another set of functions support prompting the user for information from the keyboard. These functions
are described in parse_accept(3). A complementary set of functions are available to print information on
stdout. These functions are described in parse_print(3).

A set of functions are available to read and write da-files and mi-files. These functions are described in
parse_da(3) and parse_mi(3).

The majority of the rest of the functions emulate standard system calls with builtin error detection. These
functions are described in parse_disk(3) and parse_malloc(3).

The include file stdio.h is included with parse.h.

LIST OF FUNCTIONS
Name Appears on Page Description
parse_acf parse_accept(3) accept a float from stdin
parse_acfmm parse_accept(3) accept a float from stdin with min/max checking
parse_aci parse_accept(3) accept an int from stdin
parse_acimm parse_accept(3) accept an int from stdin with min/max checking
parse_acm parse_accept(3) accept a mode (one of string) from stdin
parse_acs parse_accept(3) accept a string or filename from stdin
parse_act parse_accept(3) accept a toggle (yes/no) from stdin
parse_all_basic parse_parse(3) parse file, environment, and argc/argv
parse_args parse_parse(3) parse environment with global parse_table
parse_args_basic parse_parse(3) parse environment using parse_basic(3)
parse_args_general parse_parse(3) parse environment using parse_general(3)
parse_args_proc parse_parse(3) parse environment using specified function
parse_atof parse_atof(3) atof(3) with mathematical expressions
parse_atof_args parse_atof(3) set parameters for parse_atof(3)
parse_atof_error parse_atof(3) report parse_atof(3) errors
parse_basic parse_parse(3) parse argc/argv structure using global structures
parse_comm parse_parse(3) install one option
parse_comm_aa parse_parse(3) install one option defined in argc/argv
parse_dami parse_buffer(3) convert between da- and mi-file data
parse_er parse_print(3) print one string and exit
parse_err parse_print(3) print two strings and exit
parse_extract_suffix parse_string(3) extract a suffix
parse_fcheck parse_check(3) check float ranges
parse_fclose parse_disk(3) fclose(3) with error detection
parse_fflags parse_parse(3) install one flag in specified flag structure
parse_fft parse_fft(3) Fast Fourier Transform
parse_fft2d parse_fft(3) two-dimensional Fast Fourier Transform
parse_file parse_parse(3) parse initialization file with global function
parse_file_basic parse_parse(3) parse initialization file using parse_basic(3)
parse_file_general parse_parse(3) parse initialization file using parse_general(3)

12 September 2005 63

PARSE(3) CRC Support Library PARSE(3)

parse_file_proc parse_parse(3) parse initialization file using specified function
parse_flag_help parse_parse(3) print syntax of specified flag table
parse_flags parse_parse(3) install one flag in parse_flag_table
parse_fopen parse_disk(3) fopen(3) with error detection
parse_fread parse_disk(3) fread(3) with error checking
parse_fread_block parse_disk(3) fread(3) at specified block
parse_free parse_malloc(3) free(3) with error checking
parse_frmi parse_mi(3) frees space allocated by parse_omi
parse_from_can_float parse_canonical(3) convert float scalar from canonical form
parse_from_can_floatv parse_canonical(3) convert float vector from canonical form
parse_from_can_long parse_canonical(3) convert long scalar from canonical form
parse_from_can_longv parse_canonical(3) convert long vector from canonical form
parse_from_can_short parse_canonical(3) convert short scalar from canonical form
parse_from_can_shortv parse_canonical(3) convert short vector from canonical form
parse_from_can_ushort parse_canonical(3) convert unsigned short scalar from canonical form
parse_from_can_ushortv parse_canonical(3)convert unsigned short vector from canonical form
parse_from_ican_float parse_canonical(3) convert float scalar from inverse canonical form
parse_from_ican_floatv parse_canonical(3) convert float vector from inverse canonical form
parse_from_ican_long parse_canonical(3) convert long scalar from inverse canonical form
parse_from_ican_longv parse_canonical(3) convert long vector from inverse canonical form
parse_from_ican_short parse_canonical(3) convert short scalar from inverse canonical form
parse_from_ican_shortv parse_canonical(3) convert short vector from inverse canonical form
parse_fseek parse_disk(3) fseek(3) with error detection
parse_fwrite parse_disk(3) fwrite(3) with error checking
parse_general parse_parse(3) parse argc/argv structure using static structures
parse_help_basic parse_parse(3) print help from global option/flag structures
parse_help_general parse_parse(3) print help from static option/flag structures
parse_host parse_string(3) return name of host computer
parse_itoa parse_string(3) convert int to string
parse_malloc parse_malloc(3) malloc(3) with error checking
parse_malloc_char parse_malloc(3) malloc(3) char with error checking
parse_malloc_double parse_malloc(3) malloc(3) double with error checking
parse_malloc_float parse_malloc(3) malloc(3) float with error checking
parse_malloc_int parse_malloc(3) malloc(3) int with error checking
parse_malloc_long parse_malloc(3) malloc(3) long with error checking
parse_malloc_short parse_malloc(3) malloc(3) short with error checking
parse_omi parse_mi(3) open (examine) an mi-file
parse_omi_fe parse_mi(3) parse_omi with error handling
parse_opexist parse_parse(3) check existence of option
parse_option_help parse_parse(3) print syntax of specified option table
parse_pcheck parse_check(3) check int ranges
parse_pdt parse_print(3) print day and time on stdout
parse_pparse parse_parse(3) install option defined in string in specified option table
parse_pparse_aa parse_parse(3) install option from argc/argv context in specified option table
parse_prf parse_print(3) print float on stdout with message
parse_pri parse_print(3) print int on stdout with message
parse_prm parse_print(3) print a mode (one of string) on stdout
parse_prs parse_print(3) print string on stdout with message
parse_prt parse_print(3) print toggle (yes/no) with message on stdout
parse_rblock parse_disk(3) read a block (512 bytes) of data
parse_rcsid_print parse_print(3) prints revision number from RCS Id
parse_rda parse_da(3) read multiple records of float from a da-file
parse_remove_suffix parse_string(3) remove a suffix
parse_rline parse_disk(3) read line of text from stdin

64 12 September 2005

PARSE(3) CRC Support Library PARSE(3)

parse_rmi parse_mi(3) read an mi-file
parse_root parse_string(3) handle tilde (˜) escapes in filenames
parse_suffix parse_string(3) add a suffix to a filename
parse_suffix_malloc parse_string(3) add suffix to a filename in new buffer
parse_time_init parse_print(3) initializes time before parse_time_print
parse_time_print parse_print(3) prints system, user, and elapsed time
parse_to_can_float parse_canonical(3) convert float scalar from canonical form
parse_to_can_floatv parse_canonical(3) convert float vector from canonical form
parse_to_can_long parse_canonical(3) convert long scalar from canonical form
parse_to_can_longv parse_canonical(3) convert long vector from canonical form
parse_to_can_short parse_canonical(3) convert short scalar from canonical form
parse_to_can_shortv parse_canonical(3) convert short vector from canonical form
parse_to_can_ushort parse_canonical(3) convert unsigned short scalar from canonical form
parse_to_can_ushortv parse_canonical(3) convert unsigned short vector from canonical form
parse_to_ican_float parse_canonical(3) convert float scalar from inverse canonical form
parse_to_ican_floatv parse_canonical(3) convert float vector from inverse canonical form
parse_to_ican_long parse_canonical(3) convert long scalar from inverse canonical form
parse_to_ican_longv parse_canonical(3) convert long vector from inverse canonical form
parse_to_ican_short parse_canonical(3) convert short scalar from inverse canonical form
parse_to_ican_shortv parse_canonical(3) convert short vector from inverse canonical form
parse_tolower parse_string(3) convert string to lower case
parse_toupper parse_string(3) convert string to upper case
parse_updt parse_print(3) print day and time on specified stream
parse_uprf parse_print(3) print float on specified stream with message
parse_upri parse_print(3) print int on specified stream with message
parse_uprm parse_print(3) print a mode (one of string) on specified stream
parse_uprs parse_print(3) print string on specified stream with message
parse_uprt parse_print(3) print toggle with message on specified stream
parse_urline parse_disk(3) read line of text from a stream
parse_uwtext parse_print(3) print string on specified stream
parse_vread parse_da(3) read vector from a da-file
parse_vwrite parse_da(3) write vector as a da-file
parse_vwrite_float parse_da(3) write float vector to da-file
parse_wblock parse_disk(3) write a block (512 bytes) of data
parse_wda parse_da(3) write multiple records of float to a da-file
parse_wmi parse_mi(3) write an mi-file
parse_wmi_l parse_mi(3) write an mi-file with header label
parse_words parse_string(3) break string up into words
parse_wtext parse_print(3) print string on stdout
parse_zbuf parse_buffer(3) zero out buffer of short
parse_zfbuf parse_buffer(3) zero out buffer of float
parse_zibuf parse_buffer(3) zero out buffer of int
parse_zrbuf parse_buffer(3) zero out buffer of float (real)
parse_zsbuf parse_buffer(3) zero out buffer of short

FILES
libparse.a

actual name of the library parse.a. The library can be accessed with -lparse when using a C com-
piler or the linker.

SEE ALSO
parse_accept(3), parse_atof(3), parse_buffer(3), parse_canonical(3), parse_check(3), parse_da(3),
parse_disk(3), parse_fft(3), parse_malloc(3), parse_mi(3), parse_parse(3), parse_print(3),
parse_string(3), stdio(3), fread(3), fwrite(3), fclose(3), fopen(3), fseek(3), atof(3), malloc(3) rcs(1)

12 September 2005 65

PARSE(3) CRC Support Library PARSE(3)

AUTHOR
Carl R. Crawford

66 12 September 2005

PARSE_ACCEPT(3) CRC Support Library PARSE_ACCEPT(3)

NAME
parse_aci, parse_acimm, parse_acf, parse_acfmm, parse_acs, parse_act, parse_acm − accept information
from stdin

SYNOPSIS
#include <parse.h>

void parse_aci(message,default,v)
char *message;
int default,*v;

void parse_acimm(message,min,max,default,v)
char *message;
int min,max;
int default,*v;

void parse_acf(message,default,v)
char *message;
double default;
float *v;

void parse_acfmm(message,min,max,default,v)
char *message;
double min,max,default;
float *v;

char *parse_acs(message,default,suffix,v)
char *suffix,*message;
char *default,*v;

void parse_act(message,default,v)
char *message;
int default,*v;

void parse_acm(message,default,modes,v)
char *modes,*message;
int default,*v;

DESCRIPTION
These routines prompt the user for information. The basic outline of all the routines is as follows. A mes-
sage contained in message is printed on stdout after being prepended with the string ">> ". The default
value contained in default is printed enclosed in square brackets, "[]", and then followed by a terminating
colon, ":". The user can then type a new value followed by a carriage-return. The new value is returned to
the user in v. If a carriage-return is entered after the colon, the default value, default, is retuned in v.

When entering numbers for float and int, a mathematical expression can be used. See the documentation
for parse_atof(3) for the grammar for the expression. The expression cannot contain any spaces.

parse_aci() accepts an int. parse_acf() accepts a float.

parse_acimm() and parse_acfmm() accept int and float, respectively, along with performing range
checking. The minimum and maximum values, min and max are also printed out between less-than and
greater-than marks, "<>". If the user supplied value is not in range [min,max], the user will be prompted
again. The string "---------" is printed out before the ">>" part of the prompt to remind the user that the
entered value was out of range.

parse_acs() accepts a string. In many cases, the string will be a filename. To sav e typing, the user might
want to delete the optional suffix. The routines parse_suffix(3) and parse_suffix_malloc(3) can be used to
add the suffix explicitly. The routines described in parse_da(3) and parse_mi(3) add the suffixes .da and
.mi automatically. If the string pointer suffix is not NULL, then the string contained in suffix will be printed,
after being surrounded by square brackets, "[]", after the file name. If the string v is NULL, then space will
be allocated for the returned string. If v is not NULL it has to point to a buffer long long enough to contain

21 August 1995 67

PARSE_ACCEPT(3) CRC Support Library PARSE_ACCEPT(3)

the returned string. The address of the resulting string is returned. The maximum length is given by
PARSE_MAX_LINE.

parse_act() accepts a toggle which is also known as a boolean value. The default value, default, can con-
tain only zero or one that corresponds to "no" and "yes", respectively. Only the first letter of the response
matters and the response is case-insensitive.

parse_acm() accepts a "mode", where a mode is one the characters contained in the string modes. The
default value, default, corresponds to modes[default]. The of list of modes is not displayed. By conven-
tion, the modes are incorporated into the message string either as capital letters or enclosed in parentheses.
The routine is case sensitive so both upper and lower case letters can be included in modes. Here is an
example:

parse_acm("mode: normal(n), abnormal(a), experimental(e)",1,"nae",&v);

Which would result in the following output:

>> mode: normal(n), abnormal(a), experimental(e) [a]:

SEE ALSO
parse(3), parse_atof(3), parse_string(3), parse_da(3), parse_mi(3), parse_disk(3), parse_print(3)

AUTHOR
Carl R. Crawford

68 21 August 1995

PARSE_ATOF(3) CRC Support Library PARSE_ATOF(3)

NAME
parse_atof, parse_atof_args, parse_atof_error − replacement for atof(3) that handles mathematical expres-
sions

SYNOPSIS
#include <parse.h>

double parse_atof(s)
char *s;

parse_atof_error()

void parse_atof_args(stream,stop)
FILE *stream;
int stop;

DESCRIPTION
parse_atof() is a replacement for atof(3) that handles mathematical expressions. The expression contained
in s is converted to a double value. The expression can contain the following operators: addition (+); sub-
traction (-); division (/); multiplication (*); and unary minus (-). The priority of the operators is identical to
the C programming convention. The priority of the operators can be changed with the use of parentheses.
The expression cannot contain white space. By default, when an error occurs during the parsing of the
string, an error message is printed on stdout and the program is exited with a call to exit(3).

parse_atof_args() is used to change the stream, to which error messages are sent, to stream. The default
value of stream is stdout. The second argument of the function, stop, controls whether or not parse_atof()
exits when an error is detected. Values of zero and one indicate to and to not exit, respectively.

parse_atof_error() reports whether an error occurred during the last call to parse_atof(). A return value
of zero indicates no error and one indicates an error.

SEE ALSO
parse(3), atof(3)

AUTHOR
Carl R. Crawford

30 April 1996 69

PARSE_BUFFER(3) CRC Support Library PARSE_BUFFER(3)

NAME
parse_zbuf, parse_zrbuf, parse_dami − work on buffers (vectors arrays) of data

SYNOPSIS
#include <parse.h>

void parse_zbuf(v,n)
short int *v;
int n;

void parse_zsbuf(v,n)
short int *v;
int n;

void parse_zrbuf(v,n)
float *v;
int n;

void parse_zfbuf(v,n)
float *v;
int n;

void parse_zibuf(v,n)
int *v;
int n;

void parse_dami(da,mi,ncol,nrow)
float *da;
short int *mi;
int nrow,ncol;

DESCRIPTION
parse_zbuf() and parse_zsbuf() set the values in an array of short, which are contained in v and are of
length n, to zero.

parse_zfbuf() and parse_zrbuf() set the values in an array of float, which are contained in v and are of
length n, to zero.

parse_zibuf() sets the values in an array of int, which are contained in v and are of length n, to zero.

parse_dami() converts the floating point array contained in da to a short integer array contained in mi.
The input and output arrays can point to the same starting location. The size of the arrays are ncol by nrow.
The input data are scaled so that zero is mapped to 1024 and are linearly scaled so that the output values
fall in the range (1024-128,1024+128). A warning message will be printed if all the elements of the array
are the same. The resulting array can be saved as a mi-file using parse_wmi(3).

SEE ALSO
parse(3), parse_mi(3), parse_da(3)

AUTHOR
Carl R. Crawford

70 18 April 2003

PARSE_CANONICAL(3) CRC Support Library PARSE_CANONICAL(3)

NAME
parse_from_can_long, parse_from_can_short, parse_from_can_float, parse_to_can_long,
parse_to_can_short, parse_to_can_ushort, parse_to_can_float, parse_from_can_longv,
parse_from_can_shortv, parse_from_can_ushortv, parse_from_can_floatv, parse_to_can_longv,
parse_to_can_shortv, parse_to_can_ushortv, parse_to_can_floatv, parse_from_ican_long,
parse_from_ican_short, parse_from_ican_float, parse_to_ican_long, parse_to_ican_short,
parse_to_ican_float, parse_from_ican_longv, parse_from_ican_shortv, parse_from_ican_floatv,
parse_to_ican_longv, parse_to_ican_shortv, parse_to_ican_floatv − convert scalars and vectors to and from
canonical and inverse canonical forms

SYNOPSIS
#include <parse.h>

long parse_from_can_long(long n);
short parse_from_can_short(short n);
unsigned short parse_from_can_ushort(unsigned short n);
float parse_from_can_float(int n);
long parse_to_can_long(long n);
short parse_to_can_short(short n);
unsigned parse_to_can_ushort(unsigned n);
int parse_to_can_float(float n);
void parse_from_can_longv(long *v,int n);
void parse_from_can_shortv(short *v,int n);
void parse_from_can_ushortv(unsigned short *v,int n);
void parse_from_can_floatv(void *v,int n);
void parse_to_can_longv(long *v,int n);
void parse_to_can_shortv(short *v,int n);
void parse_to_can_ushortv(unsigned short *v,int n);
void parse_to_can_floatv(void *v,int n);
long parse_from_ican_long(long n);
short parse_from_ican_short(short n);
float parse_from_ican_float(int n);
long parse_to_ican_long(long n);
short parse_to_ican_short(short n);
int parse_to_ican_float(float n);
void parse_from_ican_longv(long *v,int n);
void parse_from_ican_shortv(short *v,int n);
void parse_from_ican_floatv(void *v,int n);
void parse_to_ican_longv(long *v,int n);
void parse_to_ican_shortv(short *v,int n);
void parse_to_ican_floatv(void *v,int n);

DESCRIPTION
These functions are used to convert scalars and vectors from and to canonical and inverse canonical forms.
Canonical form is defined to be Big-endian and inverse canonical form is defined to be Little-endian The
routines are portable and will therefore run on both Big-endian and Little-endian machines. The routines
only put bytes in the proper order and thus the actual contents are never examined.

The code assumes that shorts (and unsigned shorts), longs, and floats are two, four, and four bytes in length,
respectively. No errors are reported if these conditions are not met.

parse_from_can_long(), parse_from_can_short(), parse_from_can_ushort(), and
parse_from_can_float() convert, respectively, longs, shorts, unsigned shorts, and floats from canonical
form into the local machine representation.

parse_to_can_long() parse_to_can_short() parse_to_can_ushort() and parse_to_can_float() convert,
respectively, longs, shorts, unsigned shorts, and floats to canonical form from the local machine

12 September 2005 71

PARSE_CANONICAL(3) CRC Support Library PARSE_CANONICAL(3)

representation.

parse_from_can_longv(), parse_from_can_shortv(), parse_from_can_ushortv(), and
parse_from_can_floatv() convert, respectively, long, short, unsigned short, and float vectors of length n
from canonical form into the local machine representation.

parse_to_can_longv(), parse_to_can_shortv(), parse_to_can_ushortv(), and parse_to_can_floatv()
convert, respectively, long, short, unsigned short and float vectors of length n to canonical form from the
local machine representation.

parse_from_ican_long(), parse_from_ican_short(), and parse_from_ican_float() convert, respectively,
longs, shorts, and floats from inverse canonical form into the local machine representation.

parse_to_ican_long() parse_to_ican_short() and parse_to_ican_float() convert, respectively, longs,
shorts, float to inverse canonical form from the local machine representation.

parse_from_ican_longv(), parse_from_ican_shortv(), and parse_from_ican_floatv() convert, respec-
tively, long, short, and float vectors of length n from inverse canonical form into the local machine repre-
sentation.

parse_to_ican_longv(), parse_to_ican_shortv(), and parse_to_ican_floatv() convert, respectively, long,
short, and float vectors of length n to inverse canonical form from the local machine representation.

Conversion to/from longs only works when longs are four bytes; otherwise an error message will be
printed.

SEE ALSO
parse(3), parse_da(3), parse_mi(3)

AUTHOR
Carl R. Crawford

72 12 September 2005

PARSE_CHECK(3) CRC Support Library PARSE_CHECK(3)

NAME
parse_pcheck, parse_fcheck − check range of data

SYNOPSIS
#include <parse.h>

void parse_pcheck(v,min,max,message)
int v,min,max;
char *message;

void parse_fcheck(v,min,max,message)
double v,min,max;
char *message;

DESCRIPTION
The value v is checked to see if it is in the inclusive range [min,max]. If it is, the function returns. Other-
wise, the program exits with a call to exit (3) after printing a message on stderr.

parse_pcheck() checks int variables.

parse_fcheck() checks float variables.

SEE ALSO
parse(3)

AUTHOR
Carl R. Crawford

21 August 1995 73

PARSE_DA(3) CRC Support Library PARSE_DA(3)

NAME
parse_vwrite, parse_vwrite_float, parse_vread, parse_wda, parse_rda − read and write da-files

SYNOPSIS
#include <parse.h>

void parse_vwrite(data,n,type,file,message)
char *data;
char *message,*file;
int n,type;

void parse_vwrite_float(data,n,file)
float *data;
int n;
char *file;

float *parse_vread(data,n,maxn,type,file)
char *data;
char *file;
int *n,type,maxn;

void parse_wda(data,col,row,file)
float *data;
char *file;
int col,row;

float *parse_rda(data,col,row,file)
float *data;
char *file;
int *col,*row;

int BLOCK_FLOAT(n)
int n;

int BLOCK_SHORT(n)
int n;

DESCRIPTION
These functions are used to read and write da-files. The format of a da-file is described in the Appendix of
this man(1) page. Basically, a da-file contains a set of vectors of float values in big-endian format. Each
vector is padded so that it occupies a multiple of 512 bytes, which is equivalent to being "block aligned".
In the nomenclature of da-files, a vector is called a record. A one block header, 512 bytes, is at the begin-
ning of a da-file to tell a client the size of the vectors and the number of vectors. See the SEE ALSO section
for a list of programs that can be used to manipulate or display da-files.

For all the functions, the name of the da-file is given by file. The suffix .da is appended to the file name
using a call to parse_suffix_malloc(3).

parse_vwrite() writes a vector of data as a one record da-file. The data are contained in the vector data
which contains float elements. The pointer to the array should be type-cast to (char *). The length of the
vector is given by n. The comment contained in message is also put in the header of the da-file. The field
contained in type is ignored.

parse_vwrite_float() writes a vector of type float to a da-file. The length of the vector, which is given in
data, is n.

parse_vread() reads a vector of data from a one record da-file. The data is returned in data. If data is
NULL, then the data is read into a vector which is acquired through a call to parse_malloc(3). The type of
data is float. If data is not NULL, then maxn is the length of the buffer data. The address of where the data
are stored is returned.

parse_wda() writes a multi-record da-file of type float. The data contained in data has col elements per
record and row records. The names col and row correspond to columns and rows of an image.

74 21 August 1995

PARSE_DA(3) CRC Support Library PARSE_DA(3)

parse_rda() reads a multi-record da-file of type float. The data is returned in the spaced pointed to by
data, where the space has to contain col elements per record and row records. The names col and row cor-
respond to columns and rows of an image. If data is NULL, then sufficient space will be allocated for the
data. The function always returns the address of where the data was stored.

SEE ALSO
parse(3), parse_buffer(3), parse_canonical(3), parse_malloc(3), parse_suffix_malloc(3),
parse_disk(3), qplot(1), cplot(1), plot3d(1), cda(1), dami(1), daas(1), asda(1), fmm(1),

APPENDIX: DA-FILE FORMAT
A da-file contains a number of vectors of float values. Each vector is also called a record. Each record is
padded so that it occupies a multiple of 512 bytes, which is equivalent to being "block aligned". The term
block means 512 bytes. A one block header, 512 bytes, is at the beginning of a da-file to tell a client the
size of the vectors, the number of vectors, and the type of data contained in the vectors.

Let n be the length of each vector (all the vectors have to hav e the same length) and k be the number of
vectors. The first block of the da-file contains an array of 256 short’s:

short header[256];

where

header[0] = n;
header[1] = k;

The rest of the header can be used by the user for additional storage.

The rest of the da-file contains the vectors themselves. The vectors should be written in canonical form.
Recall that the vectors have to be padded so that each vector ends on multiples of 512 bytes. The macros
BLOCK_FLOAT(n) return the number of blocks in a vector of length n.

AUTHOR
Carl R. Crawford

21 August 1995 75

PARSE_DISK(3) CRC Support Library PARSE_DISK(3)

NAME
parse_fopen, parse_fclose, parse_popen, parse_pclose, parse_fseek, parse_fread, parse_fwrite,
parse_rblock, parse_wblock, parse_fread_block, parse_urline, parse_rline − read and write to disk and
other streams

SYNOPSIS
#include <parse.h>

FILE *parse_fopen(file,mode)
char *file;
char *mode;

void parse_fclose(stream)
FILE *stream;

FILE *parse_popen(cmd,mode)
char *cmd;
char *mode;

void parse_pclose(stream)
FILE *stream;

void parse_fseek(stream,offset,type)
FILE *stream;
long offset;
char *type;

void parse_fread(ptr,size,n,stream)
FILE *stream;
void *ptr;
int size,n;

void parse_fwrite(ptr,size,n,stream)
FILE *stream;
void *ptr;
int size,n;

void parse_fread_block(ptr,size,n,stream,block)
FILE *stream;
void *ptr;
int size,n,block;

void parse_rblock(stream,start,data,count)
FILE *stream;
int start,count;
void *data;

void parse_wblock(stream,start,data,count)
FILE *stream;
int start,count;
void *data;

int parse_urline(stream,s)
FILE *stream;
char *s;

int parse_rline(s)
char *s;

76 22 March 1998

PARSE_DISK(3) CRC Support Library PARSE_DISK(3)

DESCRIPTION
These routines are basically calls to the stdio(3) routines with the similar name. The main difference with
the original functions is that error checking is performed. If an error occurs (for example, not being able to
open a specified file) an error is printed on stderr and the program is exited via a call to exit(3). In the case
of a read or write error, the name of the file attached to stream will also be printed along with the error mes-
sage. Please see the specified stdio(3) function for additional details on the arguments.

Some of the functions utilize the concept of blocks. A block is defined to be 512 bytes. In terms of Sun’s
C-compiler, a block consists of 512 char, 256 short, or 128 float or int. A file can be considered to be a
series of blocks (if its total size in bytes is divisible by 512). By definition, the first block of a file is num-
ber zero.

parse_fopen() is a call to fopen(3). If mode is the write mode, "w", then the file, file, will be deleted if it
exists. The argument list for this function is identical to the version in stdio(3).

parse_fclose() is a call to fclose(3). The argument list for this function is identical to the version in
stdio(3).

parse_fseek() is a call to fseek(3). The first two arguments, stream and offset are passed directly to
fseek(3). The last argument, type, can be one of the following strings: "b", "c", or "e" which correspond to
the "beginning of the file", "the current position", or "the end of the file", respectively. Note that the
stdio(3) version uses SEEK_SET, SEEK_CUR, or SEEK_END as the last argument.

parse_fread() is a call to fread(3). The argument list for this function is identical to the version in
stdio(3).

parse_fwrite() is a call to fwrite(3). The argument list for this function is identical to the version in
stdio(3).

parse_fread_block() consists of calls two calls, one to parse_seek() and then a second call to
parse_fread(). The seek positions the stream at the block given by block.

parse_rblock() reads count blocks of data, starting from block start, from stream stream into data.

parse_wblock() writes count blocks of data, starting from block start, from data to stream stream.

parse_urline() reads a line of text from the specified stream. parse_rline() reads a line of text from stdin.
The text is returned in s with the trailing NEWLINE character stripped off. The maximum number of char-
acters that can be read is defined by PARSE_MAX_LINE. The functions return a value of one if an EOF is
reached and zero otherwise.

SEE ALSO
parse(3), stdio(3), fread(3), fclose(3), fseek(3), fread(3), fwrite(3)

AUTHOR
Carl R. Crawford

BUGS
parse_fopen() does not report when an existing file cannot be deleted.

22 March 1998 77

PARSE_FFT(3) CRC Support Library PARSE_FFT(3)

NAME
parse_fft, parse_fft2d − in-place Fast Fourier Transforms

SYNOPSIS
#include <parse.h>

void parse_fft(a,b,m,mode);
float *a,*b;
int m,mode;

void parse_fft2d(a,b,mx,my,mode);
float *a,*b;
int mx,my,mode;

DESCRIPTION
These functions take the one- and two-dimensional in-place Fast Fourier Transforms (FFT) or the inverse
FFT, IFFT, of a complex vector and arrays. The FFT is performed if mode is zero and the IFFT if mode is
one.

parse_fft() performs a one-dimensional FFT of a complex vector. The length of the data is two raised to
the power m. The real and imaginary parts of the complex input and output vector are contained in a and b,
respectively.

parse_fft2d() performs a two-dimensional FFT of a two-dimensional complex array. The real and imagi-
nary parts of the complex input and output arrays are contained in a and b, respectively. The input array is
formed by concatenating the rows of original array. The length of a row is giv en by two raised to the power
mx and the number of columns is two raised to the power my.

SEE ALSO
parse(3)

L. Rabiner and B. Gold, "Theory and application of digital signal processing," Prentice-Hall, 1975, pp.
366-368.

AUTHOR
Carl R. Crawford

78 21 August 1995

PARSE_MALLOC(3) CRC Support Library PARSE_MALLOC(3)

NAME
parse_malloc, parse_free, parse_malloc_float, parse_malloc_char, parse_malloc_int, parse_malloc_long,
parse_malloc_double, parse_malloc_short − calls to malloc(3) and free(3) with error detection

SYNOPSIS
#include <parse.h>

void *parse_malloc(size_t n)
int n;

void parse_free(p)
void *p;

float *parse_malloc_float(n)
int n;

char *parse_malloc_char(n)
int n;

int *parse_malloc_int(n)
int n;

long *parse_malloc_long(n)
int n;

double *parse_malloc_double(n)
int n;

short *parse_malloc_short(n)
int n;

DESCRIPTION
These routines are basically calls to malloc(3) and free(3) routines. The main difference with the original
functions is that error checking is performed. If an error occurs (for example, not being able to allocate
space) an error is printed on stdout and the program is exited via a call to exit(3).

parse_malloc() returns a char pointer to a buffer containing n char.

parse_malloc_float() returns a float pointer to a buffer containing n float.

parse_malloc_char() returns a char pointer to a buffer containing n char.

parse_malloc_int() returns a int pointer to a buffer containing n int.

parse_malloc_long() returns a long pointer to a buffer containing n long.

parse_malloc_double() returns a double pointer to a buffer containing n double.

parse_malloc_short() returns a short pointer to a buffer containing n short.

parse_free() frees the space allocated with any of the above functions.

SEE ALSO
parse(3), malloc(3), free(3)

AUTHOR
Carl R. Crawford

10 June 1997 79

PARSE_MI(3) CRC Support Library PARSE_MI(3)

NAME
parse_rmi, parse_wmi, − read, write and manipulate mi-files

SYNOPSIS
#include <parse.h>

void parse_wmi(char *file,unsigned short *image,int ncol,int nrow)

void parse_wmi_l(char *file,unsigned short *image,int ncol,int nrow,char *label)

unsigned short *parse_rmi(char *file,unsigned short *image,int *ncol,int *nrow)

PARSE_MIHEAD *parse_omi(FILE *iu,int writeonly)

PARSE_MIHEAD *parse_omi_fe(FILE *iu,int writeonly,FILE *ou,int err)

void parse_omi_checklimit(int limit)

void parse_frmi(PARSE_MIHEAD *mihead)

DESCRIPTION
These functions read, write and manipulate mi-files. An mi-file contains a number of images. Each image
has ncol columns and nrow rows of 16-bit pixels. At least on a Sparc, a pixel is contained in a unsigned
short. The size of each image and an image label are contained in an image header that precedes the pixel
data. The mi-file itself begins with a file header indicating the number of images that follow in the file.
The complete specifications for an mi-file are described in the Appendix of this man(1) page.

parse_wmi() writes the image contained in image to an mi-file. If the filename, file, begins with two
underscores (_), the underscores will be stripped off and the image appended to the file. The suffix .mi is
appended to the filename if necessary. The image number (slot) into which the image was written will be
printed on stdout. The printing is disabled if ncol is less than zero. In the case, the number of columns in
the image is set to -ncol.

parse_wmi_l() has the same functionality as parse_wmi(). The only difference is that the label label is
placed in the image header of the mi-file.

parse_rmi() reads the last image in an mi-file, file, into image. The suffix .mi is appended to the filename
if necessary. If image is NULL, then space will be allocated for the image and a pointer to the space will be
returned. The size of the image is also returned. A message is printed on stdout if more than one image is
contained in the specified file. The filename can also include the suffixes :l or :L to indicate that the last
image should be read. The suffixes :f or :F indicate that the first image should be read. The suffix :n,
where n is an integer, indicates that image n should be read, where the first image is number one. If a suffix
is used, the warning message is not printed.

parse_omi() opens (i.e., examines) the mi-file that is accessible via the file descriptor iu. The function
returns a pointer to the type PARSE_MIHEAD that has the following structure:

typedef struct {
int type; /* type of header: 256, 1024, 65K */
int n; /* number of images */
int same; /* nonzero: images have same size */
int contig; /* nonzero: images block contiguous */
int order; /* nonzero: images sequentially ordered */
int max_ncol; /* max ncol for all images */
int max_nrow; /* max nrow for all images */
int min_ncol; /* min ncol for all images */
int min_nrow; /* min nrow for all images */
int *ncol; /* array of ncol’s per image */
int *nrow; /* array of nrow’s per image */
char **label; /* array of labels per image */
unsigned long *bptr; /* array of block pointers to image plus header */
unsigned long *nblk; /* array of size of images (in blocks) w/o header */
unsigned long first; /* first block used */

80 12 September 2005

PARSE_MI(3) CRC Support Library PARSE_MI(3)

unsigned long tblk; /* total blocks in file */
} PARSE_MIHEAD;

The structure element type corresponds to one of the following types of mi-files PARSE_MI_256,
PARSE_MI_1024, or PARSE_MI_65K. The former two types are older versions and their use will be phased
out over time. The structure element n is the number of images in the file. The structure element same is
nonzero if all the images have the same number of columns and they hav e the same number of rows. The
structure element contig is nonzero if the images and headers appear without any gaps in the file with the
exception of after the first block, where a block is 512 bytes. The structure element order is nonzero if the
images are consecutive in the file. Files of type PARSE_MI_65K must be contiguous and ordered. The
structure elements max_ncol, max_nrow, min_ncol, and min_nrow are the maximum and minimum values
of the ncol and nrow for all the images. The structure element ncol is an array of the number of columns
per image. The structure element nrow is an array of the number of rows per image. The structure element
label is an array of pointers to the label contained in each image header. The structure element bptr is an
array of the first block number of each image, where the first block is actually the one-block image header.
The structure element nblk is an array of the number of blocks in each image, excluding the image header.
The structure element first is the block number of the first image header. The structure element tblk is the
total number of blocks in the file. If writeonly is nonzero, then only the structure elements type, n, first,
and tblk fields are filled in. If any errors are detected with the file while filling in the above structure, a
message will be printed and the program is exited.

parse_omi_fe() has basically the same functionality as parse_omi(). The exceptions are twofold. Error
messages are written to ou instead of stderr. If err is zero, the function will return instead of existing. A
NULL pointer will be returned in this case.

parse_omi_fe() and parse_omi() can take a long time to execute when there are a large number of files in
files of type PARSE_MI_MAGIC_65K. This is because all the image headers are read by default in order to
obtain the size of each image and its label. You can tell these functions to validate the assumption that all
images are the same size. In this case, the size of the first image is computed and then the length of the file
is computed with this size. If the actual size of the file matches, then all the images are assumed to have the
same size. If the limit set in parse_omi_checklimit() is positive, then mi-files with more than limit images
are checked for this assumption. If met, then the label fields will be set to NULL. If the value of limit is
negative, then the assumption will not be checked. The default of the limit is -1.

parse_frmi() frees the space allocated by parse_omi_fe() and parse_omi() for the PARSE_MIHEAD
structure. The function should be called to prevent memory leaks when finished with an mi-file.

SEE ALSO
dami(1), parse(3), parse_canonical(3), parse_disk(3), parse_malloc(3), parse_suffix_malloc(3), xpic(1)

APPENDIX: MI-FILE FORMAT
The suffix mi is an acronym that means multiple images. As the name implies, an mi-file contains multiple
images. In fact, up to 65535 images can be stored in a single mi-file.

In order to understand the structure of mi-files, it is necessary to introduce the concept of a block. A block
consists of 512 bytes. In terms of Sun’s C-compiler, a block consists of 512 char, 256 short, or 128 int.
An mi-file can be broken up into a series of contiguous blocks. The first block is numbered zero. All
blocks in an mi-file are 16-bit (i.e., short), unsigned integers. All data are written in canonical form; see
parse_canonical(3) for additional information.

The first block contains the following information: a magic number indicating that it is an mi-file, the num-
ber of images in the file and the first block of the first image. These three fields are located in the following
locations respectively: PARSE_MI_LOC_MAGIC, PARSE_MI_LOC_N and PARSE_MI_LOC_FIRST. The
magic number is given by PARSE_MI_MAGIC_65K.

Each image consists of an image header followed by the image itself. The image header is also one block
long and contains 256 short. The elements located at PARSE_MI_LOC_NCOL and
PARSE_MI_LOC_NROW contain the number of elements per row and the number of rows, respectively,
where the first element is numbered zero. A label can be placed at the beginning of the header, at location,
PARSE_MI_LOC_LABEL. The maximum length of the label, including the null termination, is

12 September 2005 81

PARSE_MI(3) CRC Support Library PARSE_MI(3)

PARSE_MI_LEN_LABEL characters.

The rows of the image are then concatenated and stored in contiguous blocks. The number of elements in a
picture is padded so that the picture ends on a block boundary, which is called block alignment. The rows
are not block aligned. The pixel values themselves are unsigned short.

The images and their headers are written consecutively in the file. The only exception is that the first image
begins at the block indicated in the header contained in block zero.

In the past, there were two other variations of the header for the mi-file. At present all three types are sup-
ported, but the use of the older two is deprecated. The format described above is called PARSE_MI_65K.
With the first older type, PARSE_MI_1024, the first four blocks of an mi-file contain an array of 1024
unsigned short. The value of an array element is the block in the mi-file that an image begins. The first
zero entry indicates the end of the list of images. The number of images in an mi-file is the number of ele-
ments in the array before the first zero. If there are less than 256 images in the mi-file, the 256’st element
of the header is set to one. With the second older type, PARSE_MI_256, the header only consists of 256 ele-
ments. In order to provide backwards compatibility to this type of file, we assume that older files have at
most 255 images. Therefore, the 256’st element would be zero. Because of the use of short integers in the
header, the maximum number of images that can be stored in an mi-file is actually less than 1024. For
example, only 255 256-by-256 images can be archived.

Here is a sample program that creates an mi-file of type PARSE_MI_65K with two images:

/* test program to create mi-file with two images */
#include <parse.h>

#define E1 64 /* # elements/row first image */
#define R1 32 /* # rows first image */
#define E2 128 /* # elements/row second image */
#define R2 128 /* # rows second image */

int main()
{

int n1,n2;
unsigned short int head[256]; /* header */
unsigned short int p1[E1*R1],p2[E2*R2]; /* pictures */
FILE *fd;

/* do some thing here to generate images in p1 and p2 */

/* create header for mi-file */
n1 = (E1*R1 + 255) / 256; /* # blocks first image w/o header */
n2 = (E2*R2 + 255) / 256; /* # blocks second image w/o header */
parse_zbuf(head,256); /* zero header */
head[PARSE_MI_LOC_MAGIC] = PARSE_MI_MAGIC_65K; /* magic? */
head[PARSE_MI_LOC_N] = 2; /* number of images */
head[PARSE_MI_LOC_FIRST] = 1; /* first block of first image */
parse_to_can_shortv(head,256); /* convert to canonical format */
fd = fopen("pic.mi","w");
parse_fwrite(head,sizeof(short),256,fd);

/* write first image */
parse_zbuf(head,256); /* zero header */
head[PARSE_MI_LOC_NCOL] = E1; /* set up header for image */
head[PARSE_MI_LOC_NROW] = R1;
parse_to_can_shortv(head,256);
parse_fwrite(head,sizeof(short),256,fd);

82 12 September 2005

PARSE_MI(3) CRC Support Library PARSE_MI(3)

parse_to_can_shortv(p1,E1*R1);
parse_fwrite(p1,1,512*n1,fd);

/* write second image */
parse_zbuf(head,256); /* zero header */
head[PARSE_MI_LOC_NCOL] = E2; /* set up header for image */
head[PARSE_MI_LOC_NROW] = R2;
parse_to_can_shortv(head,256);
parse_fwrite(head,sizeof(short),256,fd);
parse_to_can_shortv(p2,E2*R2);
parse_fwrite(p2,1,512*n2,fd);
return(0);

}

Here is a sample program that reads the third image from an mi-file without using parse_rmi and instead
uses parse_omi:

/* test program to read 3rd image from mi-file w/o parse_rmi */
#include <parse.h>

int main()
{

FILE *fd; /* for mi-file */
unsigned short *a; /* image store */
PARSE_MIHEAD *mihead; /* parse_omi return */
int ncol,nrow; /* columns and rows of image */
int n; /* total pixels */
int fblk; /* first block in image */

fd = parse_fopen("../xpic/kak.mi","r"); /* open mi-file */
mihead = parse_omi(fd,0); /* examine file contents */
ncol = mihead->ncol[2]; /* get image parameters */
nrow = mihead->nrow[2];
fblk = mihead->bptr[2] + 1; /* +1: walk past header */
n = ncol * nrow;
a = parse_malloc_short(ncol * nrow); /* allocate space for image */
parse_fread_block(a,sizeof(short),n,fd,fblk);
parse_frmi(mihead); /* free space used by mihead */
parse_from_can_shortv(a,n); /* convert from canonical */

}

AUTHOR
Carl R. Crawford

12 September 2005 83

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

NAME
parse_basic, parse_file_basic, parse_args_basic, parse_all_basic, parse_help_basic, parse_general,
parse_file_general, parse_args_general, parse_help_general, parse_flags, parse_fflags, parse_comm,
parse_comm_aa, parse_pparse, parse_pparse_aa, parse_opexist, parse_file, parse_args, parse_flag_help,
parse_option_help, parse_args_proc, parse_file_proc, parse_file_default, parse_arg_default − parse the
command line, initialization files, and environment

SYNOPSIS
#include <parse.h>

void parse_basic(argc,argv)
int argc;
char **argv;
global struct PARSE_FLAG_TABLE parse_flag_table[];
global struct PARSE_OPTION_TABLE parse_table[];

void parse_file_basic(file)
char *file;
global struct PARSE_FLAG_TABLE parse_flag_table[];
global struct PARSE_OPTION_TABLE parse_table[];

void parse_args_basic(arg)
char *arg;
global struct PARSE_FLAG_TABLE parse_flag_table[];
global struct PARSE_OPTION_TABLE parse_table[];

void parse_all_basic(file,arg,argc,argv)
char *file;
char *arg;
int argc;
char **argv;
global struct PARSE_FLAG_TABLE parse_flag_table[];
global struct PARSE_OPTION_TABLE parse_table[];

void parse_help_basic()
global struct PARSE_FLAG_TABLE parse_flag_table[];
global struct PARSE_OPTION_TABLE parse_table[];

parse_general(options,flags,fd,argc,argv)
struct PARSE_OPTION_TABLE *options;
struct PARSE_FLAG_TABLE *flags;
FILE *fd;
int argc;
char **argv;

parse_file_general(options,flags,fd,file)
struct PARSE_OPTION_TABLE *options;
struct PARSE_FLAG_TABLE *flags;
FILE *fd;
char *file;

parse_args_general(options,flags,fd,arg)
struct PARSE_OPTION_TABLE *options;
struct PARSE_FLAG_TABLE *flags;
FILE *fd;
char *arg;

void parse_help_general(options,flags,fd)
struct PARSE_OPTION_TABLE *options;
struct PARSE_FLAG_TABLE *flags;

84 3 March 2006

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

FILE *fd;

void parse_flags(s)
char *s;
global struct PARSE_FLAG_TABLE parse_flag_table[];

int parse_fflags(flags,s,stream)
struct PARSE_FLAG_TABLE *flags;
char *s;
FILE *stream;

int parse_comm(s)
char *s;
global struct PARSE_OPTION_TABLE parse_table[];

int parse_comm_aa(argc,argv)
int *argc;
char ***argv;
global struct PARSE_OPTION_TABLE parse_table[];

int parse_pparse(options,s,stream)
struct PARSE_OPTION_TABLE *options;
char *s;

int parse_pparse_aa(options,stream,argc,argv)
struct PARSE_OPTION_TABLE *options;
FILE *stream;
int *argc;
char ***argv;

int parse_opexist(op)
char *op;

void parse_file(file)
char *file;
extern void parse();

void parse_args(arg)
char *arg;
extern void parse();

void parse_flag_help(flags,stream)
struct PARSE_FLAG_TABLE *flags;
FILE *stream;

void parse_option_help(options,stream)
struct PARSE_OPTION_TABLE *options;
FILE *stream;

int parse_args_proc(options,flags,fd,arg,proc,proc_type)
struct PARSE_OPTION_TABLE *options;
struct PARSE_FLAG_TABLE *flags;
FILE *fd;
char *arg;
int (*proc)();
int proc_type;

int parse_file_proc(options,flags,fd,file,proc,proc_type,home,efile)
struct PARSE_OPTION_TABLE *options;
struct PARSE_FLAG_TABLE *flags;
FILE *fd;
char *file;

3 March 2006 85

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

int (*proc)();
int proc_type;
int home;
int efile;

void parse_file_default(file)
char *file;

void parse_arg_default(arg)
char *arg;

DESCRIPTION
The purpose of the functions described in this section is to help the user easily parse options passed on the
command line when a program is executed. A set of routines, called a parser, is provided to support the
parsing. The parser is designed with the assumption that all command line arguments are optional. In other
words, the program will do something useful if the command line in empty. The concept of having a
default execution mode is intrinsic to most commands found in the UNIX operating system. When com-
mand line arguments are present, they alter the default operational mode.

The parser has evolved over many years of use and therefore many application programs written by the
author of the parser use this functionality. In order to provide backwards compatibility with older applica-
tion code, there are many versions of the parser. The majority of this documentation will deal with the lat-
est (and best!) generation of the parser. The older versions of the parser will be briefly described in order
to help maintain older application code.

The parser support two types of objects: flags and options. A flag is a string beginning with a minus sign
(-) and followed by a set of characters. The characters following the minus sign are also known as flags.
At least one flag must be present after the hyphen. The parser maintains in a structure a list of valid flags
and actions to take when a flag is encountered. Typically, a variable is set to one that the flag was present
on the command line. Usually the string of flags consists only of upper- and lower-case letters. Be aware
that some characters might have to be escaped to prevent interpretation by a shell. The question mark (?),
when it is part of a flag, signifies that help is requested (more information is provided below on its use).
Examples of valid flags are -a, -Bcd, or -?. The grammar is set up so that flags are processed from left to
right on the command line. Therefore, -ab is equivalent to -a -b .

The effect of some flags can be negated, where negation means that flag will be effectively unset. When a
minus sign (-) is encountered in the flags, excluding the minus sign that denotes a sets of flags, all flags
afterwards will be negated. When a plus sign (+) is encountered, negation is turned off. In the example -a-
bc+de, the flags a, d and e will be set and flags b and c will be unset.

An option has the form name=value, where name is the of a parameter and value is a number or string to
be assigned to name. The name is also referred to as an option. The parser maintains in a structure a list of
options and actions to take if the option is present on the command line. Typically, a value is assigned to a
variable or a string is copied to a buffer. A common use of options is to specify the names of input and out-
put files. Most of the functions found with the parser allow the name and value fields to be two separate
words with the equals sign (=) still attached to the name. This functionality is provided so that filename
completion can be used with the shell. The parser is set up to process options from left to right. In general
it is possible to repeat the option on the command line and have only the last one count. This feature is use-
ful with the history mechanisms in shells. A single question mark (?) indicates that help is requested (more
details below). Most of the parser functions support the question mark without a trailing equals sign.
Options can be be abbreviated to the fewest number of characters that will not cause ambiguity in the
parser. Flags and options can be mixed on the command line.

The arguments on the command line are passed to the main program using the argc/argv syntax as follows:

main(argc,argv)
int argc;
char **argv;

where argc is the number of arguments, including the command name itself, and argv is a pointer to a list

86 3 March 2006

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

of pointers to the arguments. parse_basic() is the easiest way to call the parser. Giv en the argc/argc inter-
face the parser is called as follows:

parse_basic(argc,argv);

As stated above, two structures are used in the parsing of the flags and options. The names of the structures
are parse_table and parse_flag_table. They hav e to be global variables for the parser to load. The struc-
tures are described in the next two sub-sections.

Flag Structure
Before describing the flag structure in detail, consider the following example of a flag structure:

static gauss=0; /* 1=use gaussian test pattern */
static edata=0; /* 0= simulated 1=experimental data */
static print=1; /* 1=print program status */
static myhelp();

struct PARSE_FLAG_TABLE parse_flag_table[] = {
{’g’,&gauss,PARSE_FLAG_SET,"gaussian test pattern"},
{’e’,&edata,PARSE_FLAG_SET,"experimental data"},
{’p’,&print,PARSE_FLAG_CLR,"don’t print program status"},
{’?’,(int *)(myhelp),0,0},
{0,0,0,0}

};

When the parser is run, -g will set the variable gauss to one. Likewise, -e sets edata to one and -p sets
print to zero. The flag -? will cause the routine myhelp to be called. The line containing {0,0,0,0} is
required to tell the parser where the list ends.

The flag structure contains an entry per valid flag plus a "zero" entry to indicate its end. The structure defi-
nition, which can be found in parse.h, is:

struct PARSE_FLAG_TABLE{
char flag;
int *var;
int type;
char *help;

};

The entry flag is the one character name of the flag as it will appear on the command line. A special case is
the setting of flag to ’?’. In this case, the second argument, var, contains the address of a function to call
when the question mark appears in a flag. No arguments are passed to the function. If the ’?’ is not
present, then the routine parse_flag_help(3) is called and the program is exited. A minus sign (-) and a
plus sign (+) cannot be used as flags because they indicate negation and end negation, respectively, to the
parser. A space (’ ’) also cannot be used as a flag as it is ignored in order to support parse_all_basic(3).

The entry var is the address of the int that stores the result of the parser. In two cases var is also the
address of a function. One case is the use the ’?’ flag. The other case is the use of PARSE_FLAG_PROC in
the type field (see below).

The entry type tells the parser what to do to the variable var. The following types are valid:

PARSE_FLAG_SET sets the variable var to one. If negation is in effect, the variable is set
to zero.

PARSE_FLAG_CLR sets the variable var to zero. If negation is in effect, the variable is set
to one.

PARSE_FLAG_INC increments the variable var by one. An error will occur if negation is
in effect.

PARSE_FLAG_DEC decrements the variable var by one. An error will occur if negation is
in effect.

3 March 2006 87

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

PARSE_FLAG_VALUE(x) sets the variable var to x. An error will occur if negation is in effect.

PARSE_FLAG_PROC calls the procedure whose address is in var. Be sure to typecast the
procedure name to (int *) in the flag structure. The flag that caused the
procedure to be called is passed to the procedure. An error will occur if
negation is in effect.

The entry help is an optional string that is printed out by parse_flag_help(3).

Option Structure
Before describing the option structure in detail, consider the following example of an option structure:

static int m=128;
static int o=3;
static float s=0.0;
static char *filename="junk";
int myhelp();

struct PARSE_OPTION_TABLE parse_table[] = {
{"m",PARSE_INT,(PARSE_ARG)&m,"number of vector points" },
{"o",PARSE_INT,(PARSE_ARG)&o,"polynomial order"},
{"shift",PARSE_FLOAT,(PARSE_ARG)&s,"shift in samples"},
{"ifn",PARSE_CHAR,(PARSE_ARG)&filename,"name of input file"},
{"?",PARSE_PROC,(PARSE_ARG)myhelp},
{0,0,0,0}

};

When the parser is run, m=256 will set the variable m to 256. Likewise, o=-4 sets o to -4 and shift=3.4
sets s to 3.4. The option ifn=foo will cause the pointer filename to point to the string foo . An option than
begins with a question mark (?) will cause the routine myhelp to be called. The line containing {0,0,0,0,0}
is required to tell the parser where the list ends.

The option structure contains an entry per valid option plus a "zero" entry to indicate its end. The structure
definition, which can be found in parse.h, is:

typedef void **PARSE_ARG;
struct PARSE_OPTION_TABLE {

char *label;
int type;
PARSE_ARG pointer;
char *help;
};

PARSE_STRUCT is a synonym of PARSE_OPTION TABLE. It is used in a lot in older application code. Its
use is now deprecated.

The entry label is the filename of the option as it will appear on the command line. However, the option
can be abbreviated on the command line to the fewest number of characters that will not cause ambiguity in
the parser. The label does not have to be the same as the name of the variable put in the pointer field.
However, for ease of use, it helps if they are the same. A special case is the setting of label to ? In this
case, the third argument, pointer, contains the address of a function to call when the question mark appears
in a flag. If the ’?’ is not present, then the routine parse_option_help(3) is called and the program is
exited. Another special case is the use of = as a label. In this case, a command line argument that is miss-
ing an equals sign is processed by this entry. Note that an option can terminate in an equals sign and the
value being the next word on the command line. The "=" label is not invoked in this case.

The entry type tells the parser what to do to the variable pointer. The following types are valid:

PARSE_CHAR causes pointer to point to the string contained in value. The parser allocates the
memory for the string itself. PARSE_CHAR_POINTER is a synonym.

88 3 March 2006

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

PARSE_STRING
causes the string contained in value to be copied to the address contained in
pointer. The buffer into which the string is copied has to be large enough to
contain value. PARSE_CHAR_BUF is a synonym.

PARSE_INT sets the int pointed to by pointer to value. A mathematical expression can be
used for value. See parse_atof(3) for the expression grammar.

PARSE_FLOAT sets the float pointed to by pointer to value. A mathematical expression can be
used for value. See parse_atof(3) for the expression grammar.

PARSE_LONG sets the long pointed to by pointer to value. A mathematical expression can be
used for value. See parse_atof(3) for the expression grammar.

PARSE_TOGGLE
sets the int pointed to by pointer to either zero or one, depending on the con-
tents of value. Zero is used if value is n, no, N, NO, or 0 (zero). One is used if
value is y, yes, Y, YES, or 1 (one).

PARSE_PROC calls the procedure whose address is in pointer. The non-abbreviated name of
the option that caused the procedure to be called and its argument are passed to
the procedure. The prototype for the procedure is:

void proc(char *option,char *argument);

PARSE_SET sets the int pointed to by pointer to one. This entry is used to set "side effects";
see below for more information.

PARSE_CLR sets the int pointed to by pointer to zero. This entry is used to set "side effects";
see below for more information.

PARSE_INC increments the int pointed to by pointer by one. This entry is used to set "side
effects"; see below for more information.

PARSE_DCR decrements the int pointed to by pointer by one. This entry is used to set "side
effects"; see below for more information.

PARSE__VALUE(x)
set the int pointed to by pointer to x. This entry is used to set "side effects"; see
below for more information.

The entry pointer is the address of the variable that stores the result of the parser. In two cases pointer is
also the address of a function. One case is the use the ’?’ entry. The other case is the use of PARSE_PROC
in the type field. The entry must be typecast to PARSE_ARG for reasons of portability and to make lint(1)
happier.

The entry help is an optional string that is printed out by parse_option_help(3).

Side Effects
Consider the case of a program might have different "modes" of operation with one of the modes being the
default. The different modes would typically be invoked by having flags on the command line specify the
different modes. Each of the different modes might also use variables that are exclusive to a specific mode.
These variables might be settable using options on the command line. It makes sense that if a variable spe-
cific to a mode is set with an option, then the mode should be set as if the corresponding flag was also set
on the command line.

Another case to consider is using a set of related variables that are settable with options. It would be better
to provide a method to set each option individually or all of them at the same time.

In both of these situations we desire "side effects" when setting an option or a flag. There are number of
methods to handle these cases. One way, which is now deprecated, is to use the PARSE_PROC or
PARSE_FLAG_PROC modes and set up a routine to do all the setting of variables. Unfortunately, this
method generates code that is hard to read and some of the functionality of the option handler has to be

3 March 2006 89

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

replicated in the call-back procedure.

Another way is to set the variables corresponding to the options to some unused value (say -1). After the
parser has run, you check to see if the variables have been set to another value in which case you can pro-
gram in the side effects. This method does not work well when combined with the history mechanism of a
shell. In other words the parser does not parse from left to right.

Yet another way to handle these situations is to use the older versions of the parser that are described below.
The older versions are more versatile but much more application code has to be written. A "better" bad
way is to make use of the parse_opexist() function, which is described below.

The "best" way to have side effects is to have multiple entries in the flag or option structures for a given flag
or option. When a flag or option with multiple entries is processed by parse_basic() all the entries are exe-
cuted. The following example illustrates this functionality:

static a=0;
static b=0;
static int m=128;
static float xlen=10;
static float ylen=10;

struct PARSE_FLAG_TABLE parse_flag_table[] = {
{’a’,&a,PARSE_FLAG_SET,"set a"},
{’b’,&b,PARSE_FLAG_SET,"set a and b"},
{’b’,&a,PARSE_FLAG_SET},
{0,0,0,0}

};

struct PARSE_OPTION_TABLE parse_table[] = {
{"m",PARSE_INT,(PARSE_ARG)&m,"number of vector points" },
{"m",PARSE_SET,(PARSE_ARG)&b},
{"xlen",PARSE_FLOAT,(PARSE_ARG)&xlen,"length of x-axis"},
{"ylen",PARSE_FLOAT,(PARSE_ARG)&ylen,"length of y-axis"},
{"len",PARSE_FLOAT,(PARSE_ARG)&ylen,"length of both axes"},
{"len",PARSE_FLOAT,(PARSE_ARG)&xlen},
{0,0,0,0}

};

When the flag -b is used, both the a and b variables will be set to one. When the m=value option is used,
m will be set value and b will be set to one. The options xlen and ylen set the values of xlen and ylen,
respectively. Howev er, the option len sets both xlen and ylen.

Initialization files, Environment, Help
parse_file_basic() can be used to put command line arguments in an initialization file. If file begins with a
slash (/), then an attempt will be made to open the specified file. Otherwise, the user’s root directory is
extracted from the HOME environment variable and prefixed with another slash to the user-specified file. If
the file can be opened, then command line arguments are read from the file and sent to parse_basic().
Arguments are read until the end-of-file or until a line beginning with // is encountered. Lines beginning
with a sharp (#) are comments. Any text after a sharp, including the sharp itself, is also a comment and is
stripped off. An arbitrary number of arguments can appear on the same line. By convention, the name of
the initialization file should be the name of the program with a period (.) prefixed and perhaps with the suf-
fix rc appended. When the filename does not begin with a slash and the local (current working) directory is
not the HOME directory, the local directory is also examined for the specified file and parsed.

parse_args_basic() can be used to put command line arguments in an environment variable. If the envi-
ronment variable arg exists, it is parsed into words using parse_words(3) and passed to parse_basic(). By
convention, the name of the environment variable should be the name of the program in upper-case and per-
haps with the suffix RC appended. By convention, initialization files should be parsed first, then environ-
ment variable, and finally the command line.

90 3 March 2006

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

parse_all_basic() is basically a combination of calls to parse_file_basic(), parse_args_basic(), and
parse_basic() in that order. If file is NULL then parse_file_basic() will not be called. If arg is NULL then
parse_args_basic() will not be called. The flag -@, if present on the command line, will disable the calls
to parse_file_basic() and parse_args_basic().

parse_help_basic() is used to print the help information contained in the option and flag structures. In the
case of the option structure, the current value of the variables are also displayed. A common use of this
function is with the question mark (?) fields in the flag and option structures. The names of the file and and
the environment variables used for initialization are also printed. In general, the initialization file and vari-
able are obtained from the call to parse_all_basic(). The file and variable can be respectively set via calls
to parse_file_default() and parse_arg_default().

Complete Example
In this section, a complete program is presented. The program’s name is exp.c and is used to add, subtract
or multiply two numbers. The default mode is to add two numbers, x and y, whose initial values are 10 and
20, respectively. Here is the complete program:

#include <parse.h>
static float x=10,y=20;
static mode=0; /* 0=add 1=subtract 2=multiply */

struct PARSE_FLAG_TABLE parse_flag_table[] = {
{’a’,&mode,PARSE_FLAG_CLR,"add"},
{’s’,&mode,PARSE_FLAG_SET,"subtract"},
{’m’,&mode,PARSE_FLAG_VALUE(2),"multiply"},
{’?’,(int *)(parse_help_basic),0,0},
{0,0,0,0}

};

struct PARSE_OPTION_TABLE parse_table[] = {
{"x",PARSE_FLOAT,(PARSE_ARG)&x,"x"},
{"y",PARSE_FLOAT,(PARSE_ARG)&y,"y"},
{"?",PARSE_PROC,(PARSE_ARG)parse_help_basic},
{0,0,0,0}

};

main(argc,argv)
int argc;
char **argv;
{

parse_all_basic(".exp","EXP",argc,argv);

if(mode == 0) printf("addition: %f",x+y);
else if(mode == 1) printf("subtraction: %f",x-y);
else printf("multiplication: %f",x*y);

}

Generalized Parsing
As seen above, the "basic" parsing functions exit anytime an error is detected. The error messages are
always written to stderr. The option and flag structures are passed using global variables. These attributes,
while fine for most application programs, can cause troubles for interactive programs that support many dif-
ferent internal functions or, in a sense, programs within programs. An example of an interactive program
that would have trouble with the basic parsing functions is xpic(1).

A set of "generalized" parsing functions are included to support parsing in interactive programs. The fol-
lowing functions are available: parse_general(), parse_file_general(), parse_args_general(), and
parse_help_general(). The flag and option structures are passed as arguments. The stream to which

3 March 2006 91

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

errors are written is also passed as an argument. In case of an error, the functions return a value of minus
one.

There is no way to use parse_help_general() directly in the option and flag structures. An intermediate
procedure has to be used.

Other Parser Functions
Some of the functions described in this section are the building blocks of the "basic" parser functions. You
might to call them to get more control of the parser. Also, they are used by some older application pro-
grams.

parse_flags() installs the flags contained in the string s in the globally defined flag structure parse_flag_ta-
ble. The string must begin with a hyphen. If an error occurs, the program exits. Error messages are sent to
stderr. parse_fflags() performs the same function with three exceptions: the flag structure is supplied as
an argument; error messages are sent to stream; and a minus one (-1) is returned in case on an error.

parse_comm() installs one option, which is found in the string s, in the global option structure parse_ta-
ble. If an error occurs, the program exits. Error messages are sent to stderr. The number of the entry (the
first entry being one) is returned. The function will not return the correct entry number if multiple entries
are used to get side effects. parse_comm_aa() performs the same function with exception that the options
are contained in the argc/argv context. Options can be split into two words as long as the first word ends
with an equal sign (=). parse_pparse() performs the same function as parse_comm() with the exception
that the options table is supplied as an argument; error messages are sent to the specified stream; and the
function returns a value of minus one (-1) in case of an error. parse_pparse_aa() performs the same func-
tion with the exception that the options are supplied in the argc/argv context.

parse_opexist() returns a boolean value if the option given in op has been found by the parser. The the
existence table can be reset by passing NULL as the argument. The full name, not abbreviated, of the option
has to be supplied. To check for an option passed without a label, call the function with "=" as an argu-
ment.

parse_file() and parse_args() supply the same functionality as parse_file_basic() and
parse_args_basic() with the exception that a globally defined function parse() is called instead of
parse_basic(). Here is the prototype of the call-back function:

void parse(argc,argv)
int argc;
char **argv;

Note that the first value in argv will be unused.

parse_file_proc() and parse_args_proc() supply almost the same functionality as parse_file_basic() and
parse_args_basic() with the exception that the call-back function is supplied in argument proc is called
instead of parse_basic(). The call-back function has one of two different prototypes that are specified
using proc_type. Note that the first value in argv will be unused. Also note that the function will have to
by typecast using (void (*)()) for proc_type equal to zero. Here is the prototype of the call-back function
for proc_type equal to zero:

void parse(argc,argv)
int argc;
char **argv;

Here is the prototype of the call-back function for proc_type equal to one:

int parse(options,flags,fd,argc,argv)
struct PARSE_FLAG_TABLE *options;
struct PARSE_OPTION_TABLE *flags;
FILE *fd;
int argc;
char **argv;

The function should return a minus one in case of an error. Error messages are sent to fd. The function

92 3 March 2006

PARSE_PARSE(3) CRC Support Library PARSE_PARSE(3)

parse_file_proc() has two extra arguments home and efile. If home is nonzero, then two files will be
examined in the HOME directory and the local directory. If efile is zero, then missing files will be silently
ignored, whereas if the argument is one, then errors will be reported.

prints the help information from the specified flag structure on the specified stream.

parse_option_help() prints the help information from the specified option structure on the specified
stream. Only the help string for the first occurrence of an entry in the options structure is printed out. An
option is printed out only if the help string is present. Help for a lone equals sign (=) entry is printed out as
(empty) equivalent to:

ENVIRONMENT
HOME Used by the functions that parse the initialization file to obtain the path of the user’s home

directory.

PROGRAM[ARGS|RC]
Name of the environment variable that contains arguments for the program named pro-
gram. The suffixes ARGS and RC are used sometimes by convention.

FILES
.program[rc]

Name of the initialization file that contains arguments for the program named program. The suffix
rc is used sometimes by convention.

SEE ALSO
parse(3), parse_atof(3), parse_words(3), xpic(1)

AUTHOR
Carl R. Crawford

3 March 2006 93

PARSE_PRINT(3) CRC Support Library PARSE_PRINT(3)

NAME
parse_er, parse_err, parse_prf, parse_pri, parse_prm, parse_prs, parse_prt, parse_rcsid_print,
parse_time_init, parse_time_print, parse_updt, parse_uprf, parse_upri, parse_uprm, parse_uprs, parse_uprt,
parse_uwtext, parse_wtext − print information on stdout, stderr or a specified stream

SYNOPSIS
#include <parse.h>

void parse_upri(stream,message,v)
FILE *stream;
char *message;
int v;

void parse_pri(message,v)
char *message;
int v;

void parse_uprf(stream,message,v)
FILE *stream;
char *message;
double v;

void parse_prf(message,v)
char *message;
double v;

void parse_uprs(stream,message,v)
FILE *stream;
char *message;
char *v;

void parse_prs(message,v)
char *message;
char *v;

void parse_uprt(stream,message,v)
FILE *stream;
char *message;
int v;

void parse_prt(message,v)
char *message;
int v;

void parse_uprm(stream,message,modes,v)
FILE *stream;
char *modes,*message;
int v;

void parse_prm(message,modes,v)
char *modes,*message;
int v;

void parse_uwtext(stream,message)
FILE *stream;
char *message;

void parse_wtext(message)
char *message;

void parse_updt(stream,message)
FILE *stream;
char *message;

94 08 November 2001

PARSE_PRINT(3) CRC Support Library PARSE_PRINT(3)

void parse_pdt(message)
char *message;

void parse_err(s1,s2)
char *s1,*s2;

void parse_er(s1)
char *s1;

void parse_uprc(stream,message,v)
FILE *stream;
char *message;
char v;

void parse_prc(message,v)
char *message;
char v;

void parse_rcsid_print(char *rcsid)

void parse_time_print(ofd,s)
FILE *ifd;
char *s;

void parse_time_init()

DESCRIPTION
These functions print information, int, float, etc., on stdout, stderr, or a specified stream. The information
to be printed is contained or pointed to in the variable v. In most of the functions, a message, which is con-
tained in message, is printed before the information. Unless otherwise noted, if the message begins with an
asterisk, "*", the message with the asterisk deleted will be printed and the program will exit with a call to
exit(3). No message will be printed if message is set to NULL.

parse_pri() and parse_upri() print int on stdout and the specified stream, respectively.

parse_prf() and parse_uprf() print float on stdout and the specified stream, respectively.

parse_prs() and parse_uprs() print strings’s on stdout and the specified stream, respectively.

parse_prt() and parse_uprt() print toggle’s on stdout and the specified stream, respectively. The value, v,
can contain only zero, which corresponds to "no", or any other value, which corresponds to "yes". The
message, if present, is appended with ": " before printing the toggle contained in v .

parse_prm() and parse_uprm() print mode’s on stdout and the specified stream, respectively. The char-
acter at address modes+v is printed. The message, if present, is appended with ": ".

parse_prc() and parse_uprc() print char on stdout and the specified stream, respectively.

parse_wtext() and parse_uwtext() print strings’s on stdout and the specified stream, respectively. A new-
line, "\n", is printed after the text. A message beginning with an asterisk (*) will not cause the functions to
exit.

parse_pdt() and parse_updt() print the date and time on stdout and the specified stream, respectively.
The message, if present, is appended with ": ".

parse_er() and parse_err() print one and two strings, respectively, on stderr. No space is inserted
between the two strings. The programs always exit with a call to exit(3).

parse_rcsid_print() prints on stdout the message "rcs revision:" followed by the revision number con-
tained in the RCS identification string Id. The letter ’L’ is appended if the file is locked.

parse_time_print() prints the user, system, and elapsed times since the last call to parse_time_init() or
parse_time_print(). The string s is printed before the times if the string is not null. The output is sent to
ofd. See the man(1) pages for gettimeofday(3) and getrusage(3) for definitions of user, system and
elapsed times.

08 November 2001 95

PARSE_PRINT(3) CRC Support Library PARSE_PRINT(3)

SEE ALSO
parse(3), parse_accept(3), rcs(1), gettimeofday(3), getrusage(3)

AUTHOR
Carl R. Crawford

96 08 November 2001

PARSE_STRING(3) CRC Support Library PARSE_STRING(3)

NAME
parse_toupper, parse_tolower, parse_itoa, parse_words, parse_suffix, parse_suffix_malloc,
parse_remove_suffix, parse_root, parse_host − miscellaneous string manipulation functions

SYNOPSIS
#include <parse.h>

void parse_toupper(s)
char *s;

void parse_tolower(s)
char *s;

void parse_words(s,argc,argv,mword)
char *s;
int *argc,mword;
char **argv;

char *parse_itoa(v,s)
int v;
char *s;

char *parse_suffix_malloc(file,suffix)
char *file;
char *suffix;

void parse_suffix(file,suffix)
char *file;
char *suffix;

void parse_remove_suffix(file)
char *file;

char * parse_extract_suffix(file)
char *file;

char *parse_root(file)
char *file;

char *parse_host()

DESCRIPTION
parse_toupper() converts the string contained in s to upper case.

parse_tolower() converts the string contained in s to lower case.

parse_words() finds the words contained in the string s. A word is defined to be the text surrounded by
white space, where white consists of SPACE and TAB characters. The words contained in s are NULL termi-
nated. The number of words contained in s is returned in argc. A list of pointers to the words is returned
in argv. The argv array must be allocated by the user. The variable mword is the size of argv. It is an error
to have more than mword words in the string. An error will be printed in this case on stderr and the pro-
gram will be exited with a call to exit(3).

parse_itoa() converts the int contained in v to a string and returns the string in s. The maximum length of
the string, including the terminating NULL character, is giv en by PARSE_ITOA. If s is NULL then space for
the string will be allocated with parse_malloc(3). In all cases the address of the string, either s or the out-
put of parse_malloc(3), is returned.

parse_suffix() appends, if necessary, a filename extension, suffix, to the the filename, file. Necessary
means that a period (.) is not contained in the filename. Periods in the optional path that precedes the file-
name are ignored. The suffix should not contain a period as one is appended to the filename before the suf-
fix is appended. The buffer pointed to by file must be long enough to contain the filename with the
appended suffix. parse_suffix_malloc() performs the same function with the exception that the resulting
filename is placed into a new buffer that is acquired with a call to parse_malloc(3). Use parse_free(3) to

12 June 2000 97

PARSE_STRING(3) CRC Support Library PARSE_STRING(3)

free the space occupied by the new filename.

parse_remove_suffix() removes a suffix, if present, in the filename contained in file. The deletion is done
by setting the byte containing the first period (.) in the filename to zero. Periods in the optional path that
precedes the filename are ignored.

parse_extract_suffix() extracts a suffix, if present, in the filename contained in file. The suffix is defined
as the string following the first period (.) in the filename. Periods in the optional path that precedes the
filename are ignored. The suffix is returned in a malloc’ed array. A NULL is returned if a suffix is not
present.

parse_root() handles tildes (˜) that might be present in a filename file. If the filename begins with "˜/",
then the filename will be prepended with the home directory found in the system passwd(5) file for the user
of program. If the filename begins with ˜user, then the filename will be prepended with the home directory
of user. The resulting filename is copied to a static buffer whose address is returned.

parse_host() returns the name of the host on which the program is executing.

SEE ALSO
parse(3), parse_malloc(3), parse_free(3), getpwnam(3), getpwuid(3), passwd(5),

AUTHOR
Carl R. Crawford

98 12 June 2000

CRCPLOT(3) CRC Graphics Primitives CRCPLOT(3)

NAME
crcplot.a − graphics primitives library

SYNOPSIS
The CRC plotting package consists of the following functions:

plots() initializes the system for plotting. In particular, it opens an interprocess communication chan-
nel to a plotting window, usually xplot(1), on the local host. plotss(), plots_host(), and
plotss_host() are variants that allow control of error paths and the host on which the plotting
window is running.

plot() draws lines and manages the current position and origin of the plotting coordinate system.

factor() sets new drawing factor.

where() returns current position and drawing factor.

symbol() plots character text and special symbols.

number() plots numeric values of program variables.

scale() computes and sets scale factors for data arrays.

line() plots arrays of data for line or centered-symbol graphs.

dline() plots arrays of data with dashed lines.

curve() plots arrays of data after fitting a smooth curve to it.

axis() draws axes including tick marks, scale annotations and axis labels.

grid() draws horizontal and/or vertical grid patterns.

plot3d() generates a line drawing of a three-dimensional surface at a specified orientation.

cplot() generates contours of iso-intensity for a two-dimensional function.

clear() clears the plotting window or starts a new page on the hardcopy device.

hatch() draw hatch marks in polygons.

hardcopy()
tells the plotting window to generate a hardcopy of the displayed graphics.

mouse() blocks execution until the left mouse button is depressed in the display program; the coordi-
nates of the mouse are are returned.

DESCRIPTION
The plotting package derives its roots from the days when all plotting was done on flat bed plotters. These
plotters consisted of a pen attached to a two-dimensional positioning device and a piece of paper held in
place under the pen using vacuum attachment to the bed of the plotter. The pen could be placed in either an
up or down state that were also known as the move and draw positions, respectively. A computer could
draw arbitrarily positioned line segments by first moving the pen to one end of the segment, dropping the
pen, and then moving the pen to the other end of the line segment. Of course the speed of the positioners
would have to be controlled in a way to draw a straight line with uniform density of deposited ink. The
ability to draw lines could be built upon to draw more complex graphical objects like characters, axes and
smooth curves.

Flat bed plotters are no longer the principal plotting devices. They hav e given way to high resolution video
displays, laser printers, electrostatic printers, film recorders, and graphic formats such as Postscript. In
order to remain backwards compatible with software that drives flat bed plotters, this package retains the
user interface and nomenclature of a flat bed plotter. Howev er, as is explained below, the resulting graphics
output is sent to the newer devices. For the sake of illustration, the library will be presented as if the plot-
ters were still in use. The extensions required to support the newer plotting peripherals are explained
below.

The main routines in the graphics library are plots() and plot(). The user is required to call plots() first in
order to connect to the plotter and initialize the plotting package. The function plot() controls where the

21 August 1995 99

CRCPLOT(3) CRC Graphics Primitives CRCPLOT(3)

pen is located and whether the pen is its up or down state. Finally, the user has to detach the plotter using
plot() with a special argument in place of the up/down flag. Higher order objects, such as axes and text,
are drawn with other routines such as axis() and symbol(). However, the code to draw the higher order
objects always reduces to calling plot().

The syntax of plot() is:

plot(x,y,ipen)
float x,y
int pen

where (x,y) is the location to which to move the pen. The units and the origin of the plotting system are
discussed below. The ipen argument determines the state of the pen where the values two and three corre-
spond to down and up, respectively. The plotter is detached when ipen is 999. As an example, the com-
plete code to draw a line from (2,2) to (10,3) is:

plots();
plot(2.0,2.0,2);
plot(10.0,3.0,3);
plot(0.,0.,999);

The first call to plot() moves the pen to (2,2) and the second draws the line from (2,2) to (10,3). The last
call detaches the plotter.

The concept of a "current point" or "current position" is intrinsic to plot(). The current point is the argu-
ment, (x,y), of the previous call to plot(). In terms of the flat bed plotter, it is where a call to plot() leaves
the pen at the end of the call. plot() draws lines with respect to the current point. Therefore, an arbitrarily
positioned line segment has to be drawn with two calls to plot(). When drawing lines that share endpoints,
it is not necessary to move to the beginning of a segment because the end of one segment is the start of
another. Consider drawing a box with sides five units long with its lower-left corner located at (4,6). The
code to do this could be:

plot(4.,6.,3);
plot(4.+5.0,6.,2);
plot(4.+5.0,6.+5.0,2);
plot(4.,6.+5.0,2);
plot(4.,6.,2);

(The call to plots() and the last call to plot() with ipen set to 999 have not been included for the sake of
brevity.) The first call moves to the lower left corner; the second draws the bottom of the box; the third
draws the right side; the fourth draws the top; and last call draws the left side.

By default, all coordinates are given in units of inches with respect to the plotter’s origin, usually the lower-
left corner of paper. The plotting scale can be converted to another unit by telling plot() to multiply all of
its given coordinates by a specified value before plotting in inches. The value is specified with factor().
For example, if one wants to plot in centimeters instead of inches, one should use

factor(1/2.54)

after calling plots() but before calling plot().

The physical plotting origin can also be problematic. Consider the case where you have a subroutine that
draws a complicated object by calling the other intrinsic functions in the package, say the box described
above. Now you want to draw these boxes at various places on the page. One could pass the location of
the box to the subroutine and have it add the location to all the calls to the intrinsic functions. Such a sub-
routine could be written as:

box(x,y)
float x,y;
{

plot(x,y,3);
plot(x+5.0,y,2);

100 21 August 1995

CRCPLOT(3) CRC Graphics Primitives CRCPLOT(3)

plot(x+5.0,y+5.0,2);
plot(x,y+5.0,2);
plot(x,y,2);

}

To make the life of the programmer easier, a method is included to change the origin to any place on the
page. If the state of the pen is negative (normally it is positive) when calling plot(), the coordinates passed
to the function become the new plotting origin. All plotting done with subsequent calls to plot() is done
with respect to the new origin. Therefore, all the follow examples draw lines from (3,3) to (7,8):

plot(3.0,3.0,3);
plot(7.0,8.0,2);

or

plot(5.0,5.0,-3);
plot(-2.0,-2.0,3);
plot(2.0,3.0,2);

or

plot(3.0,3.0,-3);
plot(4.0,5.0,2);

In the case of the box example, you only have to set the origin before each call to the box function. The
box function then does not have to know anything about where on the page it is plotting, only how it is plot-
ting with respect to the origin. Of course, the scaling functionality available with factor() could be com-
bined to draw bigger or smaller boxes at different positions on the page. Boxes of with sides that are four
inches long can be drawn centered at (4,3) and (8,2) as follows:

plot(4.0,3.0,-3);
boxc();
plot(4.0,-1.0,-3);
boxc();

where boxc() is given by

boxc(){
plots(-2.0,-2.0,3);
plots(2.0,-2.0,2);
plots(2.0,2.0,2);
plots(-2.0,2.0,2);
plots(-2.0,-2.0,2);

}

Notice that the second box, which should be drawn at (8,2), does not use

plots(8.0,2.0,-3);

This is because all pen movement is with respect to the prevailing origin. The origin before this call is
already at (4,3). Therefore, to reorigin at (8,2), the argument is formed from the difference of (8,2) and
(4,3) yielding (4,-1).

The use of a negative argument in the call to plot() illustrates another feature (maybe it is a problem) of the
library. Some of the function arguments are used for multiple purposes instead of having functions with
myriad arguments. The multifaceted nature is usually obtained by using an argument’s magnitude for one
parameter and its sign for another purpose, albeit binary.

This ends the description of the basic features of the library. Please refer to the man(1) pages for complete
information on the functions listed above. The rest of this section discusses how the library is extended to
talk to output devices other than flat bed plotters.

The UNIX operating system employs pipes to use commands as building blocks to form more complicated
functions. In order for programs to communicate through pipes, they must agree on common format for the

21 August 1995 101

CRCPLOT(3) CRC Graphics Primitives CRCPLOT(3)

data they will exchange. The exchange format for graphics is plot(5). A library of functions exist in the
plot(3) library to generate plot(5) commands. Programs, called filters, exist to display the resulting graph-
ics directly on video displays or to convert it into formats understood by other devices. For example, the
filter plotps(1) converts plot(5) to Postscript. The crcplot(3) library uses a slightly modified version of the
plot(3) library (the differences are explained below) to generate plot(5) format. Therefore, the user of crc-
plot can get to any device if the appropriate filters exist.

A design goal of this library was to get graphics displayed, by default, on a video display. Because of the
proliferation of windowing systems, the portion on the video display in which the plot is drawn is referred
to as the plotting window. Malcolm Slaney wrote two programs that read plot(5) commands [from stan-
dard input so the programs are filters] and display the graphics in a window. The program is xplot(1) for
the X windowing system.

Slaney’s filters have two drawbacks. The first is that the user has to specify the necessary shell constructs
to get the graphics to the filter. Binary information would be sent to the terminal if the user would forget to
pipe the application program to the filter. The second drawback is that the window exists only as long as
the application program is running. For some applications this is not too serious. However, there is no easy
way to hav e several programs write to the same plotting window.

Slaney’s filters were modified to receive graphic commands through interprocess communication instead
through a pipe. Specifically, the communication is made over sockets, which, for the those not familiar
with them, are basically telephone times with corresponding telephone numbers. The application code
makes a socket connection (by dialing the appropriate telephone number) to the modified plotting windows
and then writes the graphics to the filter via the socket. The key here is that the plotting window has to be
running before the application program is run. This mode of operation guarantees that the graphics remain
visible after the application program has finished. Also, more than one graphics application can write to the
plotting window so that composite pictures can be generated.

The plot(3) library was modified so that the call that initialized plotting, openpl(3), automatically connects
to the socket attached to the plotting window. In practice, a new plot(3) was written because the source
code for the original was unavailable. The new library is called plotcrc(3) and is found is found in crc-
plot.a(3). In order to distinguish the new library from the original, all the command names are prefixed
with plot_. For example, openpl() was renamed plot_openpl().

By default, the connection is made to the plotting window on the local host, the host on which the applica-
tion program is running. The user can specify the name of the machine on which the plotting window is
running by setting the environment variable XPLOTHOST. The user’s program will be forced to exit if the
connection cannot be made. Variants of the initialization function exist for connecting to plotting windows
on other hosts and to return to the called program instead of exiting. The output of an application program
can be sent to standard output if the host is set to the string stdout either with a function call or with the
environment.

As indicated above, the crcplot library calls the modified plot(3) library plotcrc(3). In crcplot, plots() is
basically a call to plot_openpl(). Therefore, when one calls plots() the graphics output is sent directly to
the plotting window.

Because plotting windows can be different sizes, it can be debated how to specify the units of distance
within the window. Clearly the window has a size if terms of number of pixels. However, there is no capa-
bility for the plotting window to send its size back to the application program. Even if it could, the user
might have to tailor application code to the size. The method that is employed in the package is to assume
that the smallest dimension of the plotting window, its width or height, corresponds to ten inches. (Some-
times inches are just called plotting units.) The other dimension is found by multiplying or dividing by the
aspect ratio of the plotting window. The plotting window automatically handles the scaling from inches to
pixels. Aspect ratios of up to about two to one can be used.

FILES
libcrcplot.a

actual name of the library crcplot.a. The library can be accessed with -lcrcplot when using a C
compiler or the linker.

102 21 August 1995

CRCPLOT(3) CRC Graphics Primitives CRCPLOT(3)

ENVIRONMENT
XPLOTHOST

Can be used to specify the host and the socket for plots(), plotss(), and plot_openpl(). It has the
form [host][:socket].

INTERPROCESS COMMUNICATION
8124 Default socket used to talk to plotting window.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), clear(3), cplot(3), curve(3), dline(3), fac-
tor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plot(3x), plotcrc(3),
plot3d(3), plots(3), scale(3), symbol(3), where(3), plot(5),

AUTHOR
Carl R. Crawford

BUGS
For the sake of speed, lines are not clipped. Therefore, lines drawn outside the visible plotting area can
alias back into the display.

There is no way to control the absolute size of the final hardcopy. The user has to develop appropriate scal-
ing factors on a system-by-system basis.

21 August 1995 103

AXIS(3) CRC Graphics Primitives AXIS(3)

NAME
axis − generates a positioned and annotated axis

SYNOPSIS
#include <crcplot.h>

void axis(x,y,label,nchar,axlen,angle,fval,dv)
float *x,*y;
double axlen,angle,fval,dv;
int nchar;
char *label;

DESCRIPTION
axis() may be used to generate a positioned axis line with labels, scale annotations, and tick marks.

ARGUMENTS
x,y defines the starting coordinates for the axis line.

label is an alphanumeric text string which will be centered and used to label the generated axis.

nchar defines the number of characters (absolute) in the alphanumeric text, label. If nchar is set to
999 or -999, then the length of the string will be calculated. This feature only works if the
string is terminated with a zero.

+nchar indicates that all labeling, annotations, and tick marks are to be generated above
the axis line (that is, counterclockwise) as is normally used for the y-axis.

-nchar indicates that all labeling, annotations, and tick marks are to be generated below
the axis line (that is, clockwise) as is normally used for the x-axis.

axlen (absolute) is the length of the axis line in units. The minimum length is one.

+axlen indicates that the numerical annotation at each tick mark is offset uniformly. The
offset is to the left for a horizontal axis.

-axlen indicates that the numerical annotation at each tick mark is offset nonuniformly.
Annotation is guaranteed not to extend past the linear extent of the axis. The
mode is useful when plotting abutting axes that subtend angles other than 90
degrees.

angle is the angle, in degrees, at which the axis is to be drawn. Normally, zero degrees is used for
generating the x-axis; Ninety degrees is used for generating the y-axis.

fval is the first value (either minimum or maximum) which will be used for annotating the axis at
unit (for example: inch) intervals.

dv represents the number of data units per axis unit. This ’delta’ value will be added to the fval
starting value for generating scale annotations at each succeeding interval along the axis line.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

104 21 August 1995

CLEAR(3) CRC Graphics Primitives CLEAR(3)

NAME
clear − erase the "screen"

SYNOPSIS
#include <crcplot.h>

void clear()

DESCRIPTION
clear() sends an erase command to the "plotter". If the output is directed to xplot(1), then its plotting can-
vas will be cleared. If the output is sent to the plotter directly with lpr(1), then a form-feed will be issued.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

10 July 1995 105

CPLOT(3) CRC Graphics Primitives CPLOT(3)

NAME
cplot − generates contours of iso-intensity for a two-dimensional function

SYNOPSIS
#include <crcplot.h>

void cplot(x,y,z,nx,ny,xmin,xmax,ymin,ymax,xlen,ylen,pxaxis,pyaxis,
tv,nc,nix,niy,bl,tl,xl,yl)

float *x,*y,*z,*tv
double xmin,xmax,ymin,ymax,xlen,ylen
int nx,ny,nc,nix,niy,pxaxis,pyaxis
char *bl,*tl,*xl,*yl

DESCRIPTION
cplot() is used to generate contours of iso-intensity through a two-dimensional function. The function is
defined by z(x,y). Vectors corresponding to x and y are required along with an array corresponding to z.
Minimum and maximum bounds are required for the two vectors. The data cannot be outside these bounds.
However, the bounds can be wider than the actual data. The function can be magnified using linear interpo-
lation to generate smoother contours.

The axis lengths are used to scale the data into the plotting space. The point at (xmin,ymin) is put at the
current plotting origin.

A number of error messages are generated on standard output. The specific messages are listed below. In
almost all cases, the errors are due to improper specification of the arguments. The function will exit with
an error code of one in case of an error.

ARGUMENTS
x is an array containing the x locations of the function. The vector must be monotonically

increasing and bounded by xmin from below and xmax from above.

y is an array containing the y locations of the function. The vector must be monotonically
increasing and bounded by ymin from below and ymax from above.

z is an array corresponding to the function to have contours drawn through it. The size of the
array is nx by ny. The x-index varies the fastest.

nx is the size of the x vector.

ny is the size of the y vector.

xmin bounds the x vector from below.

xmax bounds the x vector from above.

ymin bounds the y vector from below.

ymax bounds the y vector from above.

xlen,ylen are the lengths of the two axes. These values are used for scaling the data.

pxaxis,pyaxis
A non-zero value indicates that the specified axis should be plotted.

tv is a vector of values for which contours are to be drawn.

nc is the size of the tv vector.

nix,niy are the linear interpolation factors. The values are actually the number of extra points interpo-
lated between given samples. Therefore, a value of zero indicates no interpolation and a value
of one is for magnification by two. In general the magnification factor is one plus the specified
value.

tl is a text string to be plotted on top (above) of the plot. The text is centered.

106 21 August 1995

CPLOT(3) CRC Graphics Primitives CPLOT(3)

bl is a text string to be plotted below the plot. The text is centered.

xl,yl are text strings to be plotted next to the specified axes.

SEE ALSO
cplot(1), cplot(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), cplot(3), curve(3),
dline(3), factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3),
plot3d(3), plots(3), scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

DIAGNOSTICS
cplot: nx and ny must be greater than one

The x and y vectors must have at least two points in each.

cplot: [xy] data out of range
The data in the vectors are not bounded by their min and max values.

cplot: no [xy] range
The min and max values are equal for a vector.

cplot: improper axis length
One or more of the axes lengths is less than or equal to zero.

cplot: malloc failure
The function cannot allocate temporary space for working vectors.

cplot: no contours
There has to be at least one entry in tv.

cplot: illegal interpolation factors
The interpolation factors cannot be negative.

21 August 1995 107

CURVE(3) CRC Graphics Primitives CURVE(3)

NAME
curve − generate smooth line through points

SYNOPSIS
#include <crcplot.h>

void curve(x,y,ne,delta)
float *x,*y;
double delta;
int ne;

DESCRIPTION
curve() is used to generate a smooth continuous curved line through a series of user-defined coordinate
data points. The coordinate data points may be scaled or unscaled, and the generated line may optionally
be dashed or solid. The algorithm employed is invariant under axis rotation and uses local procedures for
incrementally approximating a smooth curve.

At the minimum three points are required for curve approximation. If ne is specified as two the two data
points will be joined with a straight line. If ne is specified as zero or one; or delta is defined as zero no
plotting takes place and execution returns directly to the calling program.

Scaled coordinate data values are computed (1<i<ne):

xx = (x(i)-x(|ne|+1))/x(|ne|+2)

yy = (y(i)-y(|ne|+1))/y(|ne|+2)

ARGUMENTS
x,y are arrays of coordinate data points to be joined by a smooth curve.

ne (absolute) is the number of coordinate points in x and y. A neg ative value of ne indicates that
scale factors are located as the last two elements of each data array (see subroutine scale(3)).
A positive value of ne indicates that the coordinate points are already scaled for plotting (no
scale factors). (Note - Only a subroutine scale(3) increment argument of one can be used when
computing scale factors for this function.)

delta (absolute) is the segment length for the incremental approximation of the curve.

+delta indicates that the curve is to be generated with a solid line.

-delta indicates that the curve is to be generated with dashed lines (of |delta|*length).

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

108 10 July 1995

DLINE(3) CRC Graphics Primitives DLINE(3)

NAME
dline − plot points from data arrays with dashed lines

SYNOPSIS
#include <crcplot.h>

void dline(x,y,npts,dsh,gap,m)
float *x,*y,*dsh,*gap;
int npts,m;

DESCRIPTION
dline() may be used to plot points from coordinate data arrays with dashed lines. Scaling parameters (fval
and dv as set by subroutine scale(3)) must immediately follow each array.

Arbitrarily complex dash-gap sequences may be specified. The function first plots a dash of length dsh[0],
then a gap of length gap[0], then a dash of length dsh[1], etc. After plotting gap[m-1], the sequence is
repeated starting again with dsh[0].

ARGUMENTS
x is an array containing abscissa (x) values with scaling parameters for the x-array.

y is an array containing ordinate (y) values with scaling parameters for the y-array.

npts is the number of data values in each of the two, x,y arrays. This number does not include the
extra two locations containing the scaling parameters.

dsh a pointer to an array of length m containing the lengths of the sequence of dashes to be used in
plotting the relationship.

gap a pointer to an array of length m containing the lengths of the sequence of spaces between
dashes to be used in plotting the relationship.

m the number of dashes and gaps in the dash-gap sequence.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

10 July 1995 109

FA CTOR(3) CRC Graphics Primitives FACTOR(3)

NAME
factor − enlarge or reduce the plot size

SYNOPSIS
#include <crcplot.h>

void factor(fact)
double fact;

DESCRIPTION
factor() allows the programmer to enlarge or reduce the size of the entire plot by specifying the ratio of the
desired plot size to the normal plot size.

ARGUMENTS
fact ratio of desired size to "normal" size (for example: fact=2 gives a double size plot, fact=0.5

gives a half size plot.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

110 10 July 1995

GRID(3) CRC Graphics Primitives GRID(3)

NAME
grid − generate grid and overlay patterns

SYNOPSIS
#include <crcplot.h>

void grid(x,y,nx,xd,ny,yd)
int nx,ny;
float *xd,*yd;
double x,y;

DESCRIPTION
grid() allows the programmer to generate a variety of grid patterns or overlay forms. The user indicates
the spacing values between horizontal and vertical lines and the number of intervals desired in each direc-
tion. The design features incorporated in this function facilitate the generation of special uniform, semilog,
log-log, exponential, or other user defined grid formats.

ARGUMENTS
x,y are the starting coordinates (lower left-hand corner) of the grid to be generated.

nx the number of intervals in the x direction. If nx is greater than 1000, argument xd will be
treated as an array of interval values with nx-1000 elements. -nx indicates that the actual verti-
cal line generations are to be suppressed. Note that one more grid line is generated than the
number of intervals specified by nx. Also note that x-intervals are bounded by vertical (y-
direction) lines.

xd is the distance between uniformly spaced vertical lines (nx<l000), or an array of values for
spacing vertical lines at varying intervals (nx>1000).

ny is the number of intervals in the y-direction. If ny is greater than l000, argument yd will be
treated as an array of interval values with ny-1000 elements. -ny indicates that the actual hori-
zontal line generations are to be suppressed. Note that one more grid line is generated than the
number of intervals specified by ny. Also note that y-intervals are bounded by horizontal (x-
direction) lines.

yd is the distance between uniformly spaced horizontal lines (ny<1000), or an array of values for
spacing horizontal lines at varying intervals (ny>1000).

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

10 July 1995 111

HARDCOPY(3) CRC Graphics Primitives HARDCOPY(3)

NAME
hardcopy − inv oke the "Hard" button on the xplot panel

SYNOPSIS
#include <crcplot.h>

void hardcopy()

DESCRIPTION
hardcopy() invokes the "Hard" button on the xplot(1) panel.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

BUGS
The routine was implemented using a new plot(5) command called ’h’. Only xplot(1) recognizes this com-
mand. Other plot filters may complain about its presence.

112 10 July 1995

HATCH(3) CRC Graphics Primitives HATCH(3)

NAME
hatch − draw hatch marks in polygon

SYNOPSIS
#include <crcplot.h>

void hatch(x,y,n,ang,pitch)
float *x,*y;
double angle,pitch;
int n;

DESCRIPTION
hatch() may be used to draw hatch marks inside of a polygon. The last vertex of the polygon is assumed to
be connected to first vertex. The polygon can be convex, can contain edges that intersect and can contain
overlapping vertices. The last feature allows for holes in filled polygons.

ARGUMENTS
x is an array containing abscissa (x) locations of the vertices of the polygon.

y is an array containing ordinate (y) locations of the vertices of the polygon.

n (absolute) is the number of values in each of the two, x,y arrays. Recall that the an edge is
assumed from the last vertex back to the first vertex.

+n indicates that the edges of the polygon should be drawn.

-n indicates that the edges of the polygon should not be drawn.

angle is the angle in degrees that the hatch marks make respect to the x-axis.

pitch is the distance in plot units between the hatch lines.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

10 July 1995 113

LINE(3) CRC Graphics Primitives LINE(3)

NAME
line − plot points from coordinate data arrays

SYNOPSIS
#include <crcplot.h>

void line(x,y,npts,inc,lintyp,inteq)
float *x,*y;
int npts,inc,lintyp,inteq;

DESCRIPTION
line() may be used to plot points from coordinate data arrays. Data values may be represented by centered
symbols and/or connecting lines. Scaling parameters (fval and dv as set by subroutine scale(3)) must
immediately follow each array.

ARGUMENTS
x is an array containing abscissa (x) values with scaling parameters for the x-array.

y is an array containing ordinate (y) values with scaling parameters for the y-array.

npts is the number of data values in each of the two, x,y arrays. This number does not include val-
ues skipped by inc nor the extra two locations containing the scaling parameters.

inc is the increment used in gathering data values from the two arrays (for example: inc=l will
index each data element, inc=2 will index every other data element, inc=3 will index every
third data element, and so forth).

lintyp defines the line type/symbol to be used by subroutine line. If symbols are plotted, the magni-
tude of lintyp (absolute) determines the symbol plot frequency; (for example: lintyp=+4 indi-
cates that a special symbol is to be plotted at every fourth data point).

lintyp=0 indicates that data points are to be connected by straight lines only; no symbols
plotted.

+lintyp indicates that data points are to be connected by straight lines in conjunction with
plotting symbols.

-lintyp indicates that no lines are to be drawn; only the symbols plotted.

inteq is an integer equivalent (that is, symbol number) defining the character/symbol to be used when
symbol plotting (that is, lintyp0).

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

114 10 July 1995

MOUSE(3) CRC Graphics Primitives MOUSE(3)

NAME
mouse − return position of mouse in plot coordinate system

SYNOPSIS
#include <crcplot.h>

void mouse(x,y)
float *x,*y;

DESCRIPTION
mouse() blocks (prevents further execution) until the left mouse button is depressed in the main plotting
window of the display program. The coordinates of the mouse are then returned in the calling arguments.
The mouse coordinates are given in plotting units - not in the coordinates of the display program - suitable
for using as arguments to other plotting routines. It is recommend that you notify the user to position and
press the mouse button before calling this function. An error is generated if the function is called when a
display program is not attached.

ARGUMENTS
x,y variables to be filled with the coordinates of the present mouse position.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

10 July 1995 115

NUMBER(3) CRC Graphics Primitives NUMBER(3)

NAME
number − draw floating point numbers on user’s graph

SYNOPSIS
#include <crcplot.h>

void number(x,y,height,fpn,angle,ndec)
int ndec;
double x,y,height,fpn,angle;

DESCRIPTION
number() may be used to convert a floating-point number to the appropriate decimal equivalent which is
then drawn on the user’s plot.

ARGUMENTS
x,y is the starting coordinate defining the lower left-hand corner of the first character to be pro-

duced. If x and/or y are equal to 999.0 annotation is continued from the current coordinate
position (See symbol(3)).

height defines the character height, in units.

fpn is the floating point number to be plotted

angle is the angle, in degrees measured from the x-axis, at which the numeric annotation is plotted
(that is, the vector direction of the text string).

ndec specifies the number of decimal digits which are to be plotted:

+ndec defines the number of digits to the right of the decimal point which are to be plot-
ted, after rounding.

ndec=0 indicates that only the integer position and decimal point are to be plotted, after
rounding.

ndec=-1 indicates that only the integer portion is to be plotted, after rounding (no decimal
point).

ndec<-1 specifies that |ndec|-1 digits are to be right truncated from the integer portion and
plotted after rounding.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

116 10 July 1995

PLOT(3) CRC Graphics Primitives PLOT(3)

NAME
plot − draw and move straight lines

SYNOPSIS
#include <crcplot.h>

void plot(x,y,ipen)
double x,y;
int ipen;

DESCRIPTION
plot() processes straight line "pen" moves with the pen either up or down during movement.

ARGUMENTS
x,y is a single coordinate-pair defining the terminal position of the "pen" move. The line is drawn

from the terminal position of the previous call to this function. The coordinate pair is given in
an absolute coordinate system. The origin of the space can be controlled using negative values
of ipen.

ipen is a signed integer value controlling the "pen" up/down status, re-origin, offset/scale, and end
of plot requests.

ipen=999 End of plot.
ipen=+3 Move to (x,y).
ipen=+2 Draw to (x,y).
ipen=-2 Draw to (x,y), re-origin.
ipen=-3 Move to (x,y), re-origin.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

10 July 1995 117

PLOTCRC(3) CRC Graphics Primitives PLOTCRC(3)

NAME
plot_openpl, plot_openpl_fd, plot_openpl_host, plot_erase, plot_label, plot_line, plot_circle, plot_arc,
plot_move, plot_cont, plot_point, plot_linemod, plot_space, plot_closepl, plot_host, plot_port, plot_fd,
plot_hardcopy, plot_mouse − graphics interface to plotting windows using plot(5) format

SYNOPSIS
#include <stdio.h>
#include <crcplot.h>

int plot_openpl()

void plot_openpl_fd(fd)
FILE *fd;

int plot_openpl_host(host)
char *host;

void plot_erase()

void plot_label(s)
char *s;

void plot_line(x1, y1, x2, y2)
int x1, y1, x2, y2;

void plot_circle(x, y, r)
int x, y, r;

void plot_arc(x, y, x0, y0, x1, y1)
int x, y, x0, y0, x1, y1;

void plot_move(x, y)
int x, y;

void plot_cont(x, y)
int x, y;

void plot_point(x, y)
int x, y;

void plot_linemod(s)
char *s;

void plot_space(x0, y0, x1, y1)
int x0, y0, x1, y1;

void plot_closepl()

char *plot_host()

int plot_port()

FILE *plot_fd()

void plot_hardcopy()

void plot_mouse(x , y)
int x, y;

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner according to the
plot(5) format using the interface standard set forth in plot(3x). The routines are called by the graphic
primitives in crcplot(3). Normally, the user will not have to call these subroutines directly. The display
program xplot(1) reads plot(5) commands. Tw o functions make connections to one of these programs,
called plotting windows, via a socket connection. A graphics output is a stream of plotting instructions.
Each instruction consists of an ASCII letter usually followed by bytes of binary information. The instruc-
tions are executed in order. A point is designated by four bytes representing the x and y values; each value

118 21 August 1995

PLOTCRC(3) CRC Graphics Primitives PLOTCRC(3)

is a signed integer.

plot_openpl() or plot_openpl_host() and then plot_space() must be used before any of the others to open
the device for writing. plot_closepl() flushes the output. The last designated point in a plot_line(),
plot_move(), plot_cont(), or plot_point(), call becomes the ‘‘current point’’ for the next instruction.

plot_openpl() opens a communication channel via sockets to a plotting window. The plotting window
must be running before this function is called. By default the plotting window running on the local host is
called. The default socket number used for interprocess communication is listed below in the section
INTERPROCESS COMMUNICATION. One might want to override the host to provide a poor-person’s X
windowing system. One also might want to override the socket to run multiple copies of the plotting win-
dow on the same host. The environment can be used to do this overriding. XPLOTHOST is examined for
the name of the host and the port number. The host and the socket are specified in a string of the form
[host][:socket] where host is the name of the host and socket is the socket number. Either or both of the
parts can be missing. Note that the colon (:) is attached to the socket number. If the host is missing, then
the local host is used. If the socket is missing, then then default socket listed below is used. If host is set to
the string stdout then the output is sent to stdout instead via the socket to the plotting window. A value of
-1 will be returned if the connection cannot be made to the plotting window.

plot_openpl_host() is similar to plot_openpl() with the exception that a connection is attempted to the
plotting window running on the host named host. Note that the socket can be specified by appending the
string :socket to the name of the host. The environment is not examined in this function.

plot_host() and plot_port() returns the name of the host and port number (socket), respectively, used by
plot_openpl(). or plot_openpl_host().

plot_openpl_fd() specifies that the plot(5) commands should be written to the file descriptor fd .

plot_fd() returns the file descriptor corresponding to the communication channel to the plotting window.
The command is provided in case plot(5) information needs to be communicated without the overhead of
the subroutines described herein.

plot_closepl() flushes the graphics output and waits for a signal indicating plot completion from the plot-
ting window.

plot_move() sets the current point to (x,y).

plot_cont() draw a line from the current point to (x,y). The current point is set to (x,y).

plot_point() plots a point at (x,y). The current point is set to (x,y).

plot_line() draw a line from (x0,y0) to (x1,y1) . The current point is set to (x1,y1).

plot_label() draw the ASCII string contained in s so that its first character falls on the current point. The
argument is null-terminated and cannot contain NEWLINE characters.

plot_arc() draws a circular arc. The center is given by (x,y), and the starting and ending points are given
by (x0,y0) and (x1,x1), respectively. The least significant coordinate of the end point is used only to deter-
mine the quadrant. The arc is drawn counter-clockwise.

plot_circle() draws a circle. The center of the circle is given by (x,y) and its radius is given by r.

plot_erase() start another frame of output by erasing the screen.

plot_linemod() specifies the style for drawing further lines. Valid values for s are ‘‘dotted,’’ ‘‘solid,’’
‘‘longdashed,’’ ‘‘shortdashed,’’ and ‘‘dotdashed.’’ The argument is null-terminated and cannot contain
NEWLINE characters.

plot_space() specifies the plotting area. The lower left corner of the plotting area is given by (x0,y0) and
the upper right corner is given by (x1,y1). The plot will be magnified or reduced to fit the plotting window
as closely as possible. In every case the plotting area is taken to be square; points outside may be dis-
playable on windows whose face is not square.

plot_hardcopy() invoke the "Hard" button on the plotting window. This command is not part of the nor-
mal plot(5) protocol.

21 August 1995 119

PLOTCRC(3) CRC Graphics Primitives PLOTCRC(3)

plot_mouse() blocks (prevents further execution) until the left mouse button is depressed in the main plot-
ting window of the display program. The coordinates of the mouse are then returned in the calling argu-
ments. The mouse coordinates are given in plotting units - not in the coordinates of the display program -
suitable for using as arguments to other routines listed in this section, It is recommend that you notify the
user to position and press the mouse button before calling this function. An error is generated if the func-
tion is called when a display program is not attached. This command is not part of the normal plot(5) pro-
tocol.

ENVIRONMENT
XPLOTHOST

Can be used to specify the host and the socket for plots() and plotss(). It has the form
[host][:socket].

INTERPROCESS COMMUNICATION
8124 Default socket used to talk to plotting window.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

BUGS
The call to plot_space() is redundant because xplot(1) really don’t support its use. However, it must be
called because the display programs determine scaling parameters when a space operation is received.

120 21 August 1995

PLOT3D(3) CRC Graphics Primitives PLOT3D(3)

NAME
plot3d − generate line drawing of three-dimensional surface

SYNOPSIS
#include <crcplot.h>

void plot3d(x,y,z,nx,ny,xmin,xmax,ymin,ymax,zmin,zmax,xlen,ylen,zlen,theta,
phi,res,pxaxis,pyaxis,pzaxis,xdir,ydir,tl,bl,xl,yl,zl)

float *x,*y,*z;
double phi,theta,res,xlen,ylen,zlen,xmin,xmax,ymin,ymax,zmin,zmax
int nx,ny,pxaxis,pyaxis,pzaxis,xdir,ydir
char *bl,*tl,*xl,*yl,*zl

DESCRIPTION
plot3d() is used to generate a line drawing of a specified surface at a given orientation. Hidden line
removal is incorporated. Optionally, axes can be drawn along the sides of the surface. Also optionally,
labels can be placed above and below the surface.

The surface is defined by the function z(x,y). Vectors corresponding to x and y are required along with an
array corresponding to z. Minimum and maximum bounds are required for the two vectors and the array.
The data cannot be outside these bounds. However, the bounds can be wider than the actual data.

The viewing orientation is obtained after a first rotation about the z-axis and then using a second rotation
about the new x-axis. There are no limitations on rotation angles. Some angles, particularly those that are
multiple of ninety degrees, generate some strange looking results. The surface is drawn with lines parallel
to the x and/or y axes.

The axis lengths are required even if the axes are not drawn. They specify a bounding box, in plot units, in
which the the surface is contained. The program rotates the box using the two rotation angles and projects
it mathematically onto the plotting surface. The projection is circumscribed with a rectangle whose sides
are parallel to the physical x and y axes. The lower left corner is placed at the plotting origin. It is the
user’s responsibility to set appropriate axes lengths, origins and scale factors so that the surface is plotted in
the available space. Room below and to the left of the surface has to reserved for the axes and the bottom
label, if they are drawn. The top label is drawn just above the surface itself, not above the projection of the
bounding box. Room has to be allowed for the top if it is used. As an example, for a scale factor of one, it
has been found that the plot origin should be set to (0.75,1.0) with a call to plot(3). The lengths of the x-,
y-, and z-axes that guarantee surfaces in the plotting region of size 10 by 10 are six, six and four, respec-
tively.

A number of error messages are generated on standard output. The specific messages are listed below. In
almost all cases, the errors are due to improper specification of the arguments. The function will exit with
an error code of one in case of an error.

Hidden line removal is accomplished via an algorithm that keeps track of the upper and lower horizons
along a number of discrete samples along the x-axis. Plotting time is approximately correlated with the
number of steps. The number of steps should be on the order of the resolution of the output device. When
the resolution is too low, the intersections between line segments can be slightly off and either gaps or
crosses are generated. Therefore, far less samples are required for generating perfect plots on a monitor
than on a laser printer. The res parameter is used to determine the number of samples. It has been found
that a value of one provides a good compromise between plotting time on monitors and image quality on
laser printers.

ARGUMENTS
x is an array containing the x locations of the surface. The vector must be monotonically

increasing and bounded by xmin from below and xmax from above.

y is an array containing the y locations of the surface. The vector must be monotonically
increasing and bounded by ymin from below and ymax from above.

10 July 1995 121

PLOT3D(3) CRC Graphics Primitives PLOT3D(3)

z is an array of the locations of the surface to be displayed. The size of the array is nx by ny.
The x-index varies the fastest. The array must be bounded by zmin from below and zmax from
above.

nx is the size of the x vector.

ny is the size of the y vector.

xmin bounds the x vector from below.

xmax bounds the x vector from above.

ymin bounds the y vector from below.

ymax bounds the y vector from above.

zmin bounds the z array from below.

zmax bounds the z array from above.

xlen,ylen,zlen
are the target lengths of the three axes. The actual lengths depend on the viewing orientation
and the prevailing scale factor. An axis will not be drawn if the actual length is less than one
plot unit.

theta is the first rotation about the z axis. The units on the angle are degrees.

phi is the second rotation about the x axis. The units on the angle are degrees.

res determines the resolution for the hidden line removal algorithm. The actual number of steps is
res times 2048. The product should be on the order of the number of samples in the horizontal
axis of the plotting device. There is no reasonable upper limit on the parameter. The lower
limit is about 0.062.

pxaxis,pyaxis,pzaxis
A non-zero value indicates that the specified axis should be plotted.

xdir,ydir A non-zero value indicates that lines parallel to the specified axis should be drawn.

tl is a text string to be plotted on top (above) of the surface. The text is centered just above the
actual top of the surface.

bl is a text string to be plotted below the surface. The text is centered.

xl,yl,zl are text strings to be plotted next to the specified axes.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plot3d(3),
plots(3), scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford based on code provided by Malcolm Slaney and Mani Azimi.

DIAGNOSTICS
plot3d: nx and ny must be greater than one

The x and y vectors must have at least two points in each.

plot3d: [xyz] data out of range
The data in the vectors or the arrays is not bounded by their min and max values.

plot3d: no [xyz] range
The min and max values are equal for a vector or the array.

plot3d: improper axis length
One or more of the axes lengths is less than or equal to zero.

122 10 July 1995

PLOT3D(3) CRC Graphics Primitives PLOT3D(3)

plot3d: not enough internal resolution
The hidden line removal algorithm needs at least 128 points. Therefore, res must be greater than
about 0.062.

plot3d: malloc failure
The function cannot allocate temporary space for working vectors.

plot3d: exceeded hiding boundary

plot3d: x/y mismatch
These are internal errors and should be reported to the author.

10 July 1995 123

PLOTS(3) CRC Graphics Primitives PLOTS(3)

NAME
plots, plotss, plots_fd, plots_host, plots_host − initialize plotting package

SYNOPSIS
#include <crcplot.h>
#include <stdio.h>

void plots()

int plotss()

void plots_host(host)
char *host;

int plotss_host(host)
char *host;

void plots_fd(fd)
FILE *fd;

DESCRIPTION
These functions are used to make a connection to a plotting window, allocate buffers and initialize the plot-
ting devices before plotting can begin. One of them routines must be called before any other plotting sub-
routines are called.

A plotting window is a program that accepts plotting commands via a socket connection. The program that
is designated for use with this package is xplot(1). This program, or an alternative, must be running before
one of the functions listed above is called.

By default the plotting window running on the local host is called. The default socket number used for
interprocess communication is listed below in the section INTERPROCESS COMMUNICATION. One might
want to override the host to provide a poor-person’s X windowing system. One might want to override the
socket to run multiple copies of the plotting window on the same host. There are two methods to override
the default host and socket number - using the environment and using arguments. In both cases the host
and the socket are specified in a string of the form [host][:socket] where host is the name of the host and
socket is the socket number. Either or both of the parts can be missing. Note that the colon (:) is attached
to the socket number. If the host is missing, then the local host is used. If the socket is missing, then then
default socket listed below is used. In the case of the environment, XPLOTHOST is examined for the name
of the host and the port number. If host is set to the string stdout then the output is sent to stdout instead
via the socket to the plotting window.

plots() and plotss() make their connections after examining the specified environment variables. plots()
detects if an error has occurred during the connection prints an error message and exits. plotss() returns a
zero for a proper connection and one in the case of an error.

plots_host() and plotss_host() make their connections without examining the specified environment vari-
ables. plots_host() detects if an error has occurred during the connection, prints an error message and
exits. plotss_host() returns a zero for a proper connection and one in the case of an error.

plots_fd() will cause the plot(5) format output to be send to the file descriptor fd.

ENVIRONMENT
XPLOTHOST

Can be used to specify the host and the socket for plots() and plotss(). It has the form
[host][:socket].

INTERPROCESS COMMUNICATION
8124 Default socket used to talk to plotting window.

124 21 August 1995

PLOTS(3) CRC Graphics Primitives PLOTS(3)

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

21 August 1995 125

SCALE(3) CRC Graphics Primitives SCALE(3)

NAME
scale − compute scale factors for axis and line drawing

SYNOPSIS
#include <crcplot.h>

void scale(array,axlen,npts,inc)
float *array;
double axlen;
int npts,inc;

DESCRIPTION
scale() may be used to compute scale factors for processing unscaled data with subroutines line(3) and
axis(3). The starting value, fval, representing the starting unscaled data value (either unscaled minimum or
maximum), and the scaling factor, dv, representing the number of unscaled data units per unit, are returned
to the next two elements (as modified by inc) beyond the starting address of array plus npts.

ARGUMENTS
array is the array of unscaled data to be examined.

axlen is the axis length to which the unscaled data in array is to be scaled. axlen must be greater
than 1.0 unit.

npts defines the number of data points to be scaled in array. This value should not include values
skipped by inc or the last two elements which will be set to the scaling factors. Note that if inc
is not one, the dimension of array must be at least |inc|*(npts+2).

inc is the increment (absolute) used in gathering data from the unscaled array (for example: inc=1
will index each data element, inc=2 will index every other element, inc=3 will index every
third data element, and so forth).

+inc When inc is positive, the first unscaled value (fval) approximates a minimum with
a positive scale factor (dv).

-inc When inc is negative, the first unscaled value (fval) approximates a maximum with
a neg ative scale factor (dv).

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), number(3), plot(3), plotcrc(3), plots(3), scale(3), sym-
bol(3), where(3)

AUTHOR
Carl R. Crawford

126 10 July 1995

SYMBOL(3) CRC Graphics Primitives SYMBOL(3)

NAME
symbol − plot alphanumeric annotations

SYNOPSIS
#include <crcplot.h>

void symbol(x,y,height,itext,angle,nc)
double x,y,height,angle;
int nc;
char *itext;

DESCRIPTION
symbol() may be used to plot alphanumeric annotations at various angles and sizes. Special characters not
included in the standard character set of the computer may also be produced. A sample plot and chart of
symbols is reproduced in the attachments.

ARGUMENTS
x,y are the starting coordinates for the lower left-hand corner of the first character to be produced.

height defines the character height in units.

itext For +nc, itext contains the alphanumeric text string to be plotted. The characters must be con-
tiguous in itext. For nc=0, itext contains a single alphanumeric character to be plotted. For
-nc, itext defines the integer symbol number to be plotted. If itext is one of the special centered
symbols (0-l3) it is plotted with the x,y reference point as the geometric center of the symbol.

angle is the angle, in degrees that the text is rotated about the reference point before it is plotted,
measured counterclockwise from the horizontal (0. is horizontal, 90. is vertical).

nc +nc defines the number of characters to be plotted from the text string itext. If nc is set to 999,
then the length of the string will be calculated. This feature only works if the string is termi-
nated with a zero.

nc=0 indicates that itext contains a single character to be plotted.

-nc indicates that itext is an integer symbol number.

nc=-l specifies that the "pen" is to be up during the initial move from the present pen
position to (x,y).

nc<-1 specifies that the "pen" is to be down during the initial move from the present pen
position to (x,y).

NOTES
The x and y parameters may contain the special value 999.0. In this case the annotation is continued at the
next character position available after the last call to symbol(). Note that both the number and line subrou-
tines make internal calls to symbol() and may leave the next character position at an unexpected location.

The 999.0 value may be applied to either x or y parameters separately. The user should note, however, that
this may generate unexpected results, especially if a new angle is specified.

Character sizes which are a multiple of 7 nibs (7/l00", 7/l60", or 7/200" depending on the nib density of the
plotter in use) produce optimum character definition at 0., 90., l80., and 270. degrees. If the height is speci-
fied as zero or negative, the height and angle from the last call to symbol() are used.

The nominal width of characters, including spacing (from lower left-hand corner to lower left-hand corner)
is the same as the height.

The character/symbol set contains five "symbols" which are special control characters rather than plotted
symbols. These codes may be used in a separate call or imbedded in character strings.

backspace (BS, hex 11) causes the next available character position to be moved back one
space. This can be used to produce underlined or overscored annotation.

10 July 1995 127

SYMBOL(3) CRC Graphics Primitives SYMBOL(3)

carriage return
(CR, hex l5) causes a carriage return to be simulated. The next available character
position is moved so that it is under the first character of the last line plotted. Calls
specifying the x and y special 999.0 value do not affect the location to which the
carriage return moves. The last call to symbol() with non 999.0 coordinates deter-
mines the carriage return position. The spacing between lines is 5/7 the height of
the last line plotted.

null (NUL, hex l9) is a null character and causes no space.

superscript
subscript (SUP, hex 8D)/(SUB, hex 8E) The symbol() routine can operate in a subscript or

superscript state. In subscript state, the subscripted character is plotted at .7 nor-
mal height and down from the middle of a normal character. In superscript state,
the superscripted character is plotted at .7 normal height and up from the middle of
a normal character.

Three calls to symbol() can be used to plot a superscripted or subscripted text string. The first call, to enter
either the subscript or superscript state, is an integer symbol mode (-nc) call with itext=111 or 110 respec-
tively. The height specified in this call should be that of the main text, since the subscript/superscript text
height is found by multiplying the specified value by 0.7. The actual plotting of the superscripted or sub-
scripted text is done by a second call to symbol(). This is the same as any normal call, except a height of
zero must be specified. As long as a zero height is given, symbol() remains in the current state. To leave
the subscript or superscript state, either call symbol() with a non-zero height, or call symbol() to enter the
state opposite to the one currently being used.

To plot a subscripted or superscripted text string in a single call, the appropriate control codes must be
imbedded in the string. When this is done, the height specified should be that of the normal text. For
example, to plot the formula for water, H2O, the call to symbol() should have nc=5, height equal to the
desired height of the H and O, and itext should contain five characters, in order, H, sub, 2, sup, and 0.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

128 10 July 1995

WHERE(3) CRC Graphics Primitives WHERE(3)

NAME
where − returns present pen position and scale factor

SYNOPSIS
#include <crcplot.h>

void where(xnow,ynow,dfact)
float *xnow,*ynow,*dfact;

DESCRIPTION
where() returns xnow, and ynow, the present "pen" position (as referenced from the current software origin)
and dfact the current drawing factor ratio.

ARGUMENTS
xnow,ynow

variables to be filled with the coordinates of the present "pen" position.

dfact variable to be set to the current drawing factor ratio.

SEE ALSO
cplot(1), plot3d(1), plotps(1), xpc(1), xpic(1), xplot(1), axis(3), crcplot(3), clear(3), curve(3), dline(3),
factor(3), grid(3), hardcopy(3), hatch(3), line(3), mouse(3), number(3), plot(3), plotcrc(3), plots(3),
scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

10 July 1995 129

EXAMPLE(8) CRC Graphics Primitives EXAMPLE(8)

NAME
example − example programs using the CRC Plotting Package

DESCRIPTION
The following programs demonstrate the capabilities of the CRC Plotting Package and programs that them-
selves utilize the package.

ex1.c draws a simple house using plot(3).

ex2.c draws two versions of house while demonstrating where(3) and factor(3).

ex3.c demonstrates the use of symbol(3).

ex4.c demonstrates the use of number(3).

ex5.c demonstrates the use of scale(3).

ex6.c demonstrates the use of line(3).

ex7.c demonstrates the use of axis(3).

ex8.c demonstrates the use of curve(3).

ex9.c shows a complex example using line(3), axis(3) and scale(3).

ex10.c shows another complex plotting example.

ex11.c demonstrates the use of grid(3).

ex12.c demonstrates the use of qplot(1).

ex13.c demonstrates the use of cplot(1).

ex14.c demonstrates the use of plot3d(1).

SEE ALSO
cplot(1), plot3d(1), plotps(1), qplot(1), sunpic(1), sunplot(1), xpc(1), xpic(1), xplot(1), axis(3), crc-
plot(3), clear(3), curve(3), dline(3), factor(3), grid(3), hardcopy(3), hatch(3), line(3), number(3),
plot(3), plotcrc(3), plots(3), scale(3), symbol(3), where(3)

AUTHOR
Carl R. Crawford

130 18 September 1996

