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Abstract. Single energy computed tomography (CT) scanners use measurements of densities to detect explosives in luggage.
It is desirable to apply dual energy techniques to these CT scanners to obtain atomic number measurements to reduce false
alarm rates. However, the direct application of existing dual energy techniques has practical problems, such as, approximation
errors and lack of boundary constraints in dual energy decomposition, image artifacts, and x-ray spectral drifts. In this paper,
we present methods to reduce these problems. The methods include constrained dual energy decomposition, adaptive scatter
correction, nonlinear filtering of decomposed projections, and real-time image-based correction for x-ray spectral drifts. We
demonstrate the effectiveness of the methods using simulated data and real data obtained from a commercial dual energy CT
scanner.
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1. Introduction

1.1. Motivation of dual energy CT for explosive detection

In the aftermath of September 11th, 2001, the US government mandated the deployment of certified
explosive detection systems (EDS) to examine checked luggage for aircraft in the US airports by the
end of 2002 [1]. As a result, there were approximately 1100 CT-based EDSs deployed in the US by the
end of 2002. These deployed CT scanners produce single energy CT images of scanned baggage for
explosive detection. The single energy CT images approximate the density measurements of scanned
objects. The EDS detects explosives based on density, mass, and other properties of objects inside
scanned luggage [2–7]. These EDSs have false alarm rates associated with detection, and the resulting
falsely alarmed luggage requires labor to clear. Therefore, there is a need to reduce the false alarm rate
for these CT-based EDSs in order to reduce the labor cost.

One approach to reduce the false alarm rate of these CT-based EDSs is to use dual energy techniques [4,
5,8–10]. The dual energy techniques provide atomic number measurements of scanned objects in
addition to density measurements. The atomic number measurement is usually called “effective atomic
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number” [11,12], which is the atomic number of a hypothetical single element that gives the same x-ray
attenuation as a compound or mixture being measured. Note that in this paper we use the two terms
“atomic number” and “effective atomic number” interchangeably. The atomic number measurement
provides an additional dimension to the density measurement for characterizing the physical properties
of scanned materials. An object’s material type can be better determined by using both its density and
effective atomic number than by using the density alone [9]. For example, water and the explosive ANFO
(Ammonium Nitrate and fuel oil) can have similar physical densities. However, they differ significantly
in effective atomic numbers. Therefore, water and ANFO can be better discriminated from each other
by a dual energy CT scanner. It has also been shown on non-CT-based x-ray systems that using both
atomic number and density measurements for explosive detection can achieve a lower false alarm rate
than using density measurements alone [4,5,9,10].

We have applied the dual energy techniques described in this paper to a commercial explosive detection
CT scanner. This scanner has passed the TSA (Transportation Security Administration) explosive
detection certification test with a lower false alarm rate than a comparable single energy CT scanner [13].
However, it is not the objective of this paper to describe how the atomic number measurement is used
for automatic explosive detection, but rather to describe the details of the dual energy techniques used to
obtain the atomic number measurement for explosive detection.

1.2. An overview of dual energy techniques

Interactions between x-rays with photon energy ranging from 30 KeV to 200 KeV and materials
are dominated by Compton scatter and the photoelectric effect [14]. The Compton scatter and the
photoelectric effect are both material and energy dependent; and each of them is modeled as the product
of a material dependent coefficient and an energy dependent term, as follows:

µ(x, y, z,E) = ac(x, y, z)fKN(E)︸ ︷︷ ︸
Compton scatter

+ ap(x, y, z)fp(E)︸ ︷︷ ︸
photoelectric effect

(1)

where(x, y, z) represent the coordinates of the material under consideration,µ(x, y, z,E) is the total x-
ray attenuation,E is the incident energy,fp(E) approximates the energy dependence of the photoelectric
interaction as follows:

fp(E) = E−3 (2)

fKN(E) is the Klein-Nishina cross section for Compton scatter as follows:

fKN(α) =
1 + α
α2

[
2(1 + α)
1 + 2α

− 1
α

ln(1 + 2α)
]

+
1
2α

ln(1 + 2α) − 1 + 3α
(1 + 2α)2

(3)

and whereα = E/510.975 KeV, ac(x, y, z) is the material dependent Compton coefficient, and
ap(x, y, z) is the material dependent photoelectric coefficient. The material dependent Compton and
photoelectric coefficients are functions of the physical properties of scanned materials, such as the
mass, density, and effective atomic number [8,14–19]. The dual energy CT scanner obtains two sets of
logarithmic projections as follows:

PL = − ln
[∫

SL(E) exp [−Apfp(E) −AcfKN(E)] dE
]

+ ln
∫
SL(E)dE (4)

PH = − ln
[∫

SH(E) exp [−Apfp(E) −AcfKN(E)] dE
]

+ ln
∫
SH(E)dE (5)
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wherePL andPH are the low energy and high energy logarithmic projections,Ac =
∫
ac(x, y, z)

dl(x, y, z) andAp =
∫
ap(x, y, z)dl(x, y, z) are line integrals of the Compton coefficient,ac, and

the photoelectric coefficient,ap, andSL(E) andSH(E) are the low energy and high energy incident
x-ray spectra, respectively. In general, the dual energy projectionsPL andPH can be obtained by
three categories of data acquisition mechanisms: x-ray source spectrum switching [20], filtering by
transmission through different materials or thickness of materials (sandwich detectors) [21], and the use
of energy resolving detectors [22]. Given the Compton and photoelectric coefficients of a material, the
effective atomic number of the material can be computed using the methods described in Appendix 2.

The approaches in the literature for dual energy decomposition approximate the relationship between
a set of dual energy projections,PL and PH, and a set of decomposed projections as polynomial
functions instead of solving Eqs (4) and (5) directly [14,16,23–26]. The set of decomposed projections
can be Compton projections,Ac, and photoelectric projections,Ap, or linear combinations ofAc

andAp as in different basis functions [16,23]. One approach models the dual energy projections,
PL andPH, as polynomial functions of the decomposition projections [14]. The iterative Newton-
Raphson method is then used to solve for the decomposed projections. The other approaches model
the decomposed projections as polynomial functions of the dual energy projections directly [16,23,26].
Therefore the decomposed projections can be obtained given a pair of measured dual energy projections.
The coefficients of these polynomial functions, which contain the information of the dual energy x-ray
spectra, are obtained using various calibration methods [14–16,23–26].

1.3. Limitations of existing dual energy techniques

We applied the existing dual energy techniques to a commercial CT scanner for explosive detection as
described in Appendix 1. We do not know the exact requirements for the atomic number measurement
for explosive detection, in terms of the accuracy, precision, stability, and image quality. However, given
our experiences in explosive detection for checked luggage screening, we believe that the following
problems would have prevented us from using existing techniques directly for the purpose of explosive
detection, and thereby, from meeting the explosive detection requirement set by the TSA for checked
luggage screening.

1. Approximation error: The error due to the polynomial approximation used in the prior art meth-
ods [14,16,23–26] cannot be neglected in our application due to the large dynamic range of the
photoelectric coefficients, which results from a large variety of materials in checked luggage. For
example, there is over 200% approximation error when we applied the indirect approximation
method of [14] to the dual energy CT scanner (Please refer to Section 3.1 for the details).

2. Boundary constraints: In practice, due to noise, scatter, and other sources of errors, the solution
to Eqs (4) and (5) may not exist, may be numerically unstable, or may be physically meaningless
(negative values ofAc or/andAp). Simply truncating the projection values causes a saturation
artifact [27].

3. Image Artifacts: The artifacts in the dual energy decomposed images are another issue in our
application, because the image artifacts corrupt the atomic number measurements of scanned
objects. The photoelectric effect is a small part of the interaction between an x-ray beam and
materials at the x-ray energies at which a typical CT scanner operates. For example, the photoelectric
effect only accounts for about 2% of the total x-ray attenuation for water at 80 KeV. Therefore the
photoelectric image may contain artifacts due to scatter and noise [28,29]. Because the nonlinear
dual energy decomposition also amplifies noise, a small amount of scatter may cause artifacts, such
as a cupping effect and streaks on the photoelectric image.
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Another artifact is the streak artifact. The streak artifact is caused by inconsistencies in the projection
data [30]. The inconsistencies could be the result of noise, scatter, and a large dynamic range of
the photoelectric coefficient. For example, the photoelectric coefficient is about 3000KeV 3/cm
for plastics, and is 1,600,000KeV3/cm for iron. Therefore, objects with a large photoelectric
coefficient generate streak artifacts and affect the measurements of objects with a small photoelectric
coefficient when located nearby during scanning. This is similar to the metal streaks in the single
energy CT images [18,31].

4. X-ray Spectral Drift: All of the approaches in the literature assume that the x-ray spectra do not
change from the time when a calibration is conducted to the time when a measurement scan is
performed. However, we found that the x-ray spectra on our dual energy CT scanner drift over
time. The drift is due to variations in thermally sensitive components of the high voltage power
supply (HVPS), and the drift usually includes a short term drift on the order of hours and a long term
drift on the order of days. Such drifts cause errors in the density and atomic number measurements,
thus deteriorating the performance of explosive detection.

2. Algorithm description

In this section, we describe the methods used to reduce the problems encountered when applying
existing dual energy techniques to the dual energy CT scanner.

2.1. Constrained decomposition method

We use the approach proposed by Kalenderet al. [24] to decompose the dual energy projections,P L

andPH, into Compton and photoelectric projections,Ac andAp, by employing modeled x-ray spectra
(described in Section 3). The actual spectra may be slightly different from the modeled spectra, and
we describe a calibration procedure to compensate for this difference in Section 2.4. In our constrained
decomposition method (CDM), we pose the dual energy decomposition problem as a constrained mini-
mization problem. The solution,Ac andAp, to the constrained minimization problem with any inputPL
andPH, exists, is numerically stable, and is physically meaningful. In addition, the resultingAc andAp

are continuous functions of the dual energy projections,PL andPH. Thus the decomposed images do
not suffer from the artifacts caused by discontinuities inAc orAp.

We pose the dual energy decomposition problem as the following constrained least square minimization
problem:

(Ac, Ap) = arg min
(Ac,Ap)

[PL(Ac, Ap) − PL]2 + [PH(Ac, Ap) − PH]2︸ ︷︷ ︸
Q(Ac,Ap)

(6)

subject to the constraints:

Ac � 0 Ap � 0 (7)

wherePL andPH are measured dual energy projections,PL(Ac, Ap) andPH(Ac, Ap) are the modeled
dual energy projections as described in Eqs (4) and (5) respectively, andQ(A c, Ap) is the cost function.
Note that(Ac, Ap) denotes a pair of Compton projection,Ac, and photoelectric projection,Ap, to be
optimized. The notation “arg” means that the left hand part of the equation is replaced with the values
of (Ac, Ap) that minimize the right hand side of the equation.
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Fig. 1. Two isotransmission curves intersect in the first quadrant.

The above constrained optimization problem can be solved using Lagrange multiplier methods [32].
However, we describe the following optimization procedure, which takes advantage of the special
structure of the cost functionQ(Ac, Ap). The minimization problem can be broken into two sub-cases
and solved individually.

The solution to the above minimization problem is described intuitively using isotransmission
curves [27]. An isotransmission curve is a function that describesAp in terms ofAc, given a pro-
jection value,PL, or PH, with x-ray spectrumSL(E), or SH(E). Therefore, dual energy projections,
PL andPH, correspond to two isotransmission curves in the (Ac, Ap) space. When these two isotrans-
mission curves intersect in the first quadrant (including the two axes), there existAc � 0 andAp � 0
corresponding to the input projections,PL andPH, that results inQ(Ac, Ap) = 0. This case is illustrated
in Fig. 1. The two-dimensional Newton-Raphson method [33] is used to obtain the solution iteratively
by using the Jacobian of the Eqs (4) and (5).

When the isotransmission curves corresponding to the input projections,PL andPH, do not intersect
in the first quadrant, there is no pair(Ac, Ap), that yieldsQ(Ac, Ap) = 0. This is determined by the
convergence of theAc andAp within the first quadrant by using the two-dimensional Newton-Raphson
method. Such cases are illustrated in Fig. 2. In these cases, we force eitherA c orAp to be zero; i.e. when
the two isotransmission curves do not intersect in the first quadrant, we require that the solution be in the
form of either (Ac � 0, Ap = 0) or (Ac = 0, Ap � 0), minimizing the least square errorQ(Ac, Ap).

The minimization with the solution in the format of either (Ac � 0, Ap = 0) or (Ac = 0, Ap � 0) is
solved iteratively using the Newton-Gauss method [33], a gradient descent algorithm using the inverse
of second order derivatives as the step size. Hence, two possible solutions are obtained in the format of
(Ac � 0, Ap = 0) or (Ac = 0, Ap � 0). The final solution is chosen to be the one which yields smaller
least square error. The above iterative algorithm usually converges to an error, which is the difference
between two consecutive solutions, of10−6 in less than 10 iterations.
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Fig. 2. Two isotransmission curves do not intersect in the first quadrant.

2.2. Adaptive scatter correction

There is a large body of literature for estimating and correcting scatter for medical CT applications [34–
42], and we are not aware of any literature dealing with scatter in the application of luggage CT scanning.
The methods developed for medical CT application assume an elliptical shape of a scanned object. Also
note that the dynamic range of density and atomic number in a medical CT scanner is from air to bone,
while in our luggage CT scanner, the dynamic range is much bigger, i.e. from air to metal objects.

It is our belief that Glover’s scatter correction [34] is more general and can be extended for our luggage
CT application. Thus, our adaptive scatter correction algorithm is an extension of Glover’s scatter
correction algorithm. Glover corrects scatter in the projection space (logarithm space, or attenuation
space) using the first order approximation as follows:

Pcorr = Pmeas + α exp (Pmeas)︸ ︷︷ ︸
Pscatter

(8)

wherePcorr is the scatter corrected projection,Pmeas is the measured projection,Pscatter is the equivalent
projection due to the scatter, andα is a nonnegative constant, representing the ratio of the scatter intensity
to the air intensity, which is the intensity received by the detectors in the absence of any object in the
x-ray path.

The scatter correction algorithm described in Eq. (8) assumes that scatter only depends on the projection
value of a single detector. However, because scatter is a spatially correlated process [35,40,42], we found
that Glover’s algorithm does not reduce scatter artifacts in the decomposed image. Therefore, we extend
Glover’s algorithm to incorporate the spatial dependence by makingα in Eq. (8) detector dependent.

We use a low-pass filter, denoted ash(n), to incorporate the spatial correlation into the scatter
estimation. Furthermore, the spatial support (or size) of the low-pass filter is also adaptive to account for
the size and density of the objects. For example, when there is a large dense object in the scanning field,
there is more scatter; therefore the support of the low-pass filter is large. Otherwise, the support of the
low-pass filter is small.

The input projection is defined in a three-dimensional space: projection angle, detector row, and
detector column. For the simplicity of exposition, we describe our adaptation scheme along one row
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of detectors. Denoting the detector index along one row ass (0 � s < S), and input dual energy
projections asP ′

L(s) andP ′
H(s), we first estimate the low-pass filter lengthW . Note that the low-pass

filter length is fixed for one entire detector row, but varies from row to row and from projection angle
to projection angle. The filter length,W , is an indicator of the size of scanned objects that are dense
enough to generate scatter. Therefore we use projection data for estimating the filter length. Both the
high and low energy projections can be used for estimating the filter length,W , and we only show the
estimation based on the high energy projections as follows,

W =
⌊
max

s
C(s)

⌋
(9)

where�x� is the largest integer no greater thanx, and

C(s) =
min(S−1,s+W0)∑

s′=max(s,0)

u

(
P ′
H

(
s′ −

⌊
W0

2

⌋)
− P0

)
(10)

whereW0 is an initial guess of the low-pass filter length,P0 is a threshold to remove the influence of
objects which are not denser thanP0, andu(·) is a step function as follows:

u(x) =
{

1, x � 0
0, x < 0 (11)

Given the estimated low-pass filter sizeW , we use the low-pass filtered projections as the adaptive
scatter coefficientα as in Eq. (8). A scatter profile is assumed to be the same for both high and low
energy projections, therefore the estimated filter length,W , from the high energy projections is used
for calculating adaptive scatter coefficients of both high and low projections. Leth(n) (0 � n < W ,∑W−1

n=0 h(n) = 1) be the low-pass filter with the estimated length,W . We then have the following
adaptiveαL(s) for low energy projections andαH(s) for high energy projections:

αL(s) = σL
�(W−1)/2�∑
n=−�W/2�

P ′
L(s+ n)h(n + �W/2�) (12)

αH(s) = σH
�(W−1)/2�∑
n=−�W/2�

P ′
H(s+ n)h(n + �W/2�) (13)

whereσL and σH are constants, which are empirically determined. Zero-padding is used for the
boundaries (s < 0 ands � W ) of P ′

L(s) andP ′
H(s).

The scatter corrected dual energy projections,PL(s) andPH(s), are then computed as follows:

PL(s) = P ′
L(s) + αL(s) exp

(
P ′
L(s)

)
(14)

PH(s) = P ′
H(s) + αH(s) exp

(
P ′
H(s)

)
(15)

The adaptive scatter correction algorithm described above adapts the scatter coefficients,αL(s) and
αH(s), to the size and density of the scanned objects. When the object is large, the support of the
low-pass filter,W , is large; when the scanned object is dense, the scatter coefficients are large.
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The parameters such asP0, W0, σL, andσH were experimentally determined to provide improved
image quality over scanned explosives in different configurations.

Note that the above adaption scheme is independent in each row of a 2D detector array and the
filter size in each row remains constant; these are due to constraints of computing power. It can be
straightforwardly extended to take 2D spatial correlation of scatter into account and adapt the filter size
along each row.

2.3. Destreaking

The streak artifact is caused by inconsistencies in the projection data [30]. The inconsistencies could
be the result of noise, scatter, a large dynamic range of the photoelectric coefficient. In order to reduce
the inconsistencies, we apply a nonlinear filter to the decomposed photoelectric projection data. The
projection data is three-dimensional: detector row with indexr, detector column with indexc, and
projection angle with indexv. The input photoelectric projection is denoted asAp(r, c, v), and the
filtered photoelectric projection is denoted asA′

p, which is computed as follows:

A′
p(r, c, v) =



Āp(r, c, v) + σ(r, c, v)T, Ap(r, c, v) − Āp(r, c, v) > σ(r, c, v)T
Āp(r, c, v) − σ(r, c, v)T, Ap(r, c, v) − Āp(r, c, v) < −σ(r, c, v)T
Ap(r, c, v), |Ap(r, c, v) − Āp(r, c, v)| � σ(r, c, v)T

(16)

whereT is a constant, and

Āp(r, c, v) =
1
N

∑
(r′,c′,v′)∈C(r,c,v)

Ap(r′, c′, v′) (17)

σ(r, c, v) =

√√√√ 1
N

∑
(r′,c′,v′)∈C(r,c,v)

[
Ap(r′, c′, v′) − Āp(r, c, v)

]2
(18)

whereC(r, c, v) is a set of predefined neighborhood samples of(r, c, v). In our implementation, we use
the following six-neighbor scheme,

C(r, c, v) = {(r′, c′, v′) : |r′ − r| + |c′ − c| + |v′ − v| = 1} (19)

In the above nonlinear filtering, we retain the photoelectric projection value that is consistent with its
neighbors, and replace the inconsistent projections with the allowed limits derived from its neighbors.
We use the range derived from the second order statistics, namely, the mean and the standard deviation,
of the neighbors as the consistency criterion. This nonlinear filtering criterion adapts to the distribution
of the neighbors: when the standard deviation of the neighbors is large, the consistency range increases;
otherwise, it decreases. Therefore, instead of setting one uniform threshold for all the projection data,
we allow the filter to adapt to the statistics of the data. Note that the filtered projection is a continuous
function in terms of the input projection.
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2.4. Spectral correction

The dual energy CT scanner produces images of measurements of CT numbers, denoted asH, and
atomic numbers, denoted asZ of scanned objects. The values ofH andZ are obtained by processing dual
energy projections measured with two x-ray spectra, and using the non-linear decomposition algorithm
described in Section 2.1. The decomposition is performed using fixed x-ray spectra for all the scanners.
However, different scanners have different spectra due to variations in beamline components, such as
x-ray tubes, filtration materials, and detectors. The spectra on each scanner also vary with time due to
voltage drifts in the HVPS. As a result,H andZ vary along time on an individual scanner, and vary from
scanner to scanner as well. In this section, we describe our method for correctingH andZ for these
spectral variations.

X-ray spectra on each scanner are tracked and compensated in real-time using reference materials
described below. To simplify the notation, we use vector and matrix representation for description. Let
x = [H, Z]T be the vector containing the CT number and the atomic number. We use the following
linear model to correct the spectral variations across scanners:

x′ = x0 + S (x − x̃0) (20)

wherex0 contains the nominal (actual) CT number and atomic number of the0th reference material,x
contains the measured CT number and atomic number for a scanned material,x̃0 contains the expected
CT number and atomic number of the0th reference material when hypothetically measured at the same
x-ray spectra for generatingx of the scanned material,x ′ contains the spectrally corrected CT number
and atomic number, andS is a2 × 2 parameter matrix as follows:

S =
[
shh shz

szh szz

]
(21)

The parameters can be computed by solving the following2(N − 1) linear equations:

xi = x0 + S (x̃i − x̃0) , i = 1, . . . , N − 1 (22)

wherexi contains theith reference material’s nominal CT number and atomic number, andx̃i contains
the ith reference material’s expected CT number and atomic number when hypothetically measured at
the same x-ray spectra used to generatex (in Eq. (20)) of the scanned material.

Since there are four parameters in each parameter matrixSi, at least four system equations (2(N−1) �
4) are required to obtain a unique solution. Therefore, at least three materials (N � 3) are needed for
calibration.

We use a copper filter mounted over some detectors on the detector array to detect and track changes
of x-ray spectra on each scanner. LetI la andIha be the low energy and high energy x-ray intensities
received by the detectors without the copper filter, respectively, andI lc andIhc be the low energy and high
energy x-ray intensities received by the detectors shielded by the copper filter, respectively. We compute
the low energy copper ratio, denoted asR l, and high energy copper ratio, denoted asRh, as follows:

Rl =
I la
I lc
, Rh =

Iha
Ihc

(23)

Let vectorr =
[
Rl, Rh

]T
denote the vector containing low energy and high energy copper ratios for the

convenience of exposition.
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The expected value of̃xi (i = 0, . . . , N − 1) of the ith reference material is computed by using the
following linear model:

x̃i = x̂0
i + Mi (r − r0) (24)

wherex̂0
i contains the0th measured CT number and atomic number of theithmaterial during a calibration,

r contains the copper ratios corresponding tox, r0 contains the copper ratios corresponding tox̂0
i , and

Mi is a2 × 2 parameter matrix as follows:

Mi =
[
mi

hhm
i
hl

mi
lh m

i
ll

]
(25)

The parameters in the matrixMi (i = 0, . . . , N − 1) are obtained by the following calibration.
The calibration involves scanningN materials atL different spectra. After the calibration is performed,

the calibration parametersMi (i = 0, . . . , N − 1) are stored in the reconstruction computer and are
used for the spectral correction as described above.

The first (0th) measurement is performed at the spectra corresponding to the scanner’s nominal
operating point. The rest of the measurements are taken by perturbing the x-ray spectra around the
nominal operating point to simulate the HVPS drift.N materials are contained in a case, so that they can
be measured simultaneously. For thej th measurement, the measured CT number and atomic number
x̂j

i (i = 0, . . . , N − 1) and the corresponding copper ratiosrj are recorded. The parametersMi are
obtained by solving the following2(L− 1) system equations:

x̂j
i = x̂0

i + Mi(rj − r0), j = 1, . . . , L− 1 (26)

Since there are four parameters in each parameter matrixMi, at least four system equations (2(L−1) �
4) are required to obtain a unique solution. Therefore, at least three measurements (L � 3) are needed
for calibration.

The spectral correction algorithm is performed on reconstructed images in real-time on a quad-CPU
reconstruction computer. The copper ratios are updated every rotation to track the change of the x-ray
spectra. Every reconstructed CT image and every reconstructed Z image are corrected in a pixel-by-pixel
basis with the latest copper ratios.

3. Experiments and results

In this section, we demonstrate the effectiveness of our dual energy techniques using simulated and real
data. We compare our constrained decomposition method (CDM) with methods from the literature with
respect to decomposition approximation errors and errors due to boundary conditions. We also show
the image quality improvement produced by the adaptive scatter correction algorithm and destreaking
algorithm using real data obtained from the dual energy CT scanner. Finally, we demonstrate the
effectiveness of the spectral correction algorithm for compensating the spectral drift of the dual energy
CT scanners.

3.1. Approximation error

In this experiment, we evaluated the approximation error in the decomposition using our CDM method
as described in Section 2.1 and the indirect polynomial approximation method [14], denoted here as
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the AM method. We compared the results of our CDM method with the AM method, because the AM
method is a representative method of the polynomial approximation methods in the literature. We used
simulation in our experiment so that no other sources of errors affected experimental results.

We used the dual energy x-ray spectra generated according to Appendix 3 for the simulation. The
calibration was performed as follows to obtain the 16 polynomial coefficients of Eqs (12) and (13) as
described in [14]. We generated 14,400 candidate calibration points:Ac ranges from 0.1 to 12.0 with

a step size of 0.1;A
1
3
p ranges from 3KeV to 360KeV with a step size of 3KeV. For each pair,Ac

andAp, we generated the corresponding pair,PL andPH using Eqs (4) and (5). Among these 14,400
candidate calibration points, we used those points with bothPL � 12 andPH � 12 as calibration points.
This resulted in total of 8,997 calibration points for obtaining 16 polynomial coefficients of the AM
method. The polynomial coefficients were obtained by a minimum mean square error method through
solving these 8,997 overdetermined linear system equations. In order to avoid the numerical instability
in solving for the polynomial coefficients, we scaled the maximum value ofAp down to 10KeV3.

To test the decomposition algorithm, we generated dual energy projections using the dual energy CT
scanner geometry as described in Appendix 1 for a 20 cm diameter cylindrical water phantom centered
at the isocenter of the scanner. The projections were generated in an axial scan mode. The Compton
coefficient and the photoelectric coefficient for water used in the experiment were 0.163cm−1 and
4,645KeV3/cm, respectively [27].

We used the two-dimensional Newton-Raphson method to iteratively solve forAc andAp given the
16 polynomial coefficients of the AM method. The stopping criterion used in the experiment was that
the sum of the absolute change ofAc andAp between two consecutive iterations was less than10−6. We
used the maximum projection values corresponding to the detector number 126 (detectors are numbered
from 1) for computing the percentage errorsE% = Aest−Atrue

Atrue
×100%, whereAest is the estimated value

of the trueAtrue. The errors ofAc andAp of the AM method are 1.50% and 238.25%, respectively. The
corresponding errors of our method are 0.00008% and 0.0002%, respectively. Note that the errors in the
CDM method are due to the numerical error, while the errors in the AM method are dominantly due to
the approximation error. Also note that the much larger error ofAp is due to the fact thatAp is more
sensitive to any source of errors. The negative value ofAp from the AM method resulted in meaningless
values of physical properties of the scanned objects, such as negative atomic numbers. Therefore, such a
large approximation error prevents us from applying these existing polynomial approximating methods
directly to our application.

3.2. Boundary constraints

We used simulated data to demonstrate the performance improvement of our constrained decomposition
method over the truncation method as suggested in [27] for handling the boundary conditions. The
truncation method was implemented with our best guess from [27].

We first randomly generatedAc andAp pairs, of whichAc was uniformly distributed between 0 and
12 andAp was uniformly distributed between 0 and4.5 × 107. For each pair,Ac andAp, we computed
the corresponding dual energy projection pair,PL andPH, according to Eqs (4) and (5).

We then added photon noise, which was modeled as a Poisson process [43,44], to each pair of dual
energy projections as follows:

P̃L = lnnL0 − ln (g (nL0 exp(−PL))) (27)

P̃H = lnnH0 − ln (g (nH0 exp(−PH))) (28)
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whereP̃L andP̃H are the noise corrupted low and high energy projections,nL0 andnH0 are the number
of photons of the low and high energy incident x-rays, andg(λ) is a random point process according to
the Poisson distribution with meanλ. In this experiment,nL0 = 5 × 105, andnH0 = 1 × 106.

In the truncation method, we used the two-dimensional Newton-Raphson iterative method to solve for
a pair of decomposed projections,Ac andAp, given a pair of noise corrupted̃PL andP̃H. We used the
following criterion for truncation:

Ãc =




0, Ac < 0 (a)
0, Ac = NaN (b)
Ac, otherwise

Ãp =




0, Ap < 0 (c)
0, Ap = NaN (d)
Ap, otherwise

(29)

whereÃc andÃp are the truncated decomposed projections, NaN denotes Not a Number as defined in
the IEEE standard 754 for floating point numbers. Note that the truncation is only applied when one or
more of (a), (b), (c), (d) conditions occurs. Among all generated pairs, (Ac, Ap), there were 100,000
truncation cases.

We also used our constrained decomposition method to decompose the same 100,000 noise corrupted
dual energy projections into decomposed projections. Our constrained decomposition method did not
yield any NaN solutions.

We define the error,E, as the follows for comparing the performance between our constrained
decomposition method and the truncation method:

E =

[
Ãc −Ac

Ac

]2
+

[
Ãp −Ap

Ap

]2
(30)

whereAc andAp are the uniformly generated true Compton projection and the true photoelectric
projection respectively, and̃Ac andÃp are the decomposed results of the noise corrupted dual energy
projections using either the truncation method or our constrained decomposition method. The truncation
method yielded an error of 6355 and our constrained decomposition method had an error of 3119.
Our constrained decomposition method reduced the error caused by the truncation method during the
decomposition by about 50%, demonstrating the robustness of our method to noise.

3.3. Scatter correction

We tested our adaptive scatter correction algorithm over numerous images obtained from the scanner,
and we show a representative example of these tested images below.

Figure 3 shows the Z images of a cross section of a Nylon cylinder. Figure 3(a) shows the Z image
without scatter correction, and Fig. 3(b) shows the Z image with scatter correction. In this case, the
image without scatter correction shows both the amplified noise effect introduced during the dual energy
decomposition procedure and cupping artifacts.

The above images qualitatively demonstrate that our algorithm is effective in reducing the cupping
artifacts and noise. In order to quantitatively measure the improvements of the image quality of the
effective-atomic-number image from our scatter correction algorithm, we define the following measures.

1. Mean of the effective atomic numberZmean from an object;
2. Cupping ratioR is defined as follows,

R =
Zbon − Zcen
Zbon

× 100% (31)
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Table 1
Quantitative comparison of the effective-atomic-number images before and after
scatter correction. Note that the true effective atomic numbers of the two explosives
are not known (as denoted by NA)

Materials meanZ cupping ratioR SNR (dB)
true before after before after before after

Aluminum 13 11.5 13.1 47% 31 % 15.0 18.0
Nylon 6.33 3.02 7.13 23% 7% 1.8 19.1
Explosive 1 NA 6.55 9.19 37% 11% 9.5 14.5
Explosive 2 NA 7.20 7.40 27% 24% 14.1 14.7

(a) without scatter correction (b) with scatter correction

Fig. 3. Z images (atomic number multiplied by 100) of a cross section of a Nylon cylinder, window= 1400, level= 700.

whereZcen is the effective atomic number at the center of an object, andZbon is the effective
atomic number at the boundary of an object. In this definition, image without cupping artifact has
the cupping ratio of 0.

3. SNR of the effective-atomic-number image is defined as follows,

SNR = 20 log10
Zmean

Zσ
(32)

whereZmean is the mean of the effective atomic number of an object, andZσ is the standard
deviation of the effective atomic number of the corresponding object.

Table 1 lists comparison of four scanned materials in terms of mean atomic number, cupping ratio,
and SNR. For all the listed materials, the scatter correction algorithm improves the SNR and reduces the
cupping ratio, indicating the effectiveness of our algorithm.

3.4. Destreaking

We also tested our destreaking algorithm over numerous images obtained from the scanner, and a
representative example of the tested images is shown in Fig. 4. The images with destreaking have much
less streaks than the images without destreaking. Furthermore, the folded sheet explosive simulant is not
blurred by the destreaking algorithm.

In order to obtain the quantitative measurements in terms of the quality improvements in Z images,
we calculated the quantitative measurements such as mean of the effective atomic number and SNR, as
defined in Section 3.3, for different materials. Table 2 lists the mean of effective atomic number and SNR
before and after our destreaking algorithm. Our algorithm improves all these quantitative measurements
for the Z image, indicating the effectiveness of our destreaking algorithm. Note that the SNR of low Z
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Table 2
Quantitative comparison of the Z images before and after
destreaking. Note that the true effective atomic numbers of
the two explosives are not known

Materials meanZ SNR (dB)
true before after before after

Nylon 6.33 4.83 7.13 2.7 19.1
Explosive A NA 8.92 9.19 10.5 14.5
Explosive B NA 7.26 7.40 10.7 14.7
Aluminum 13 12.9 13.1 17.2 18.0

Table 3
Nominal atomic numbers and nominal CT numbers for
the three reference materials used in the spectral calibra-
tion

Material reference # (i) 0 1 2
Material Nylon TEFLON PVC
Nominal atomic number 6.62 8.21 14.53
Nominal CT number 1163 2016 1838

Table 4
DC and AC settings of the HVPS for the spectral cali-
bration

Measurement # (j) 0 1 2 3 4
DC voltage (KV) 140 140 140 135 130
AC voltage (KV) 40 38 36 40 40

materials such as Nylon has more improvements than high Z materials such as Aluminum, this is due to
the fact that the photoelectric effect is much smaller in low Z materials than in high Z materials.

3.5. Spectral correction

In this experiment, we first describe our spectral calibration procedure for the dual energy scanner. We
used an image auality phantom (IQP) for the calibration [45]. The IQP contains three bulk materials:
a Nylon cylinder, a PVC cylinder, and a TEFLON cylinder, and other objects for measuring the image
quality of the scanner. We used these three bulk materials as our reference materials, which are described
in Section 2.4. The Nylon cylinder was used as the0th reference material, the TEFLON cylinder was
used as the1st reference material, and the PVC cylinder was used as the2nd reference material. The
nominal atomic numbers and nominal CT numbers of these materials are listed in Table 3.

As described in Section 2.4, at least three measurements are needed during the calibration with
different x-ray spectra. We used five measurements to obtain theith material calibration parametersMi
with i = 0, 1, 2. We changed the DC voltage and the AC voltage to simulate the HVPS drift, and the
resulting x-ray spectra drifted accordingly. The DC and AC settings for the calibration are shown in
Table 4.

For each DC and AC setting, we reconstructed the corresponding CT image and atomic number
image, and measured the CT numbers and atomic numbers of the three materials. We also recorded the
corresponding copper ratios for each scan. We then solved the system equations described in Eq. (26)
for the calibration parameters,Mi, with i = 0, 1, 2.

We also used different DC voltages and AC voltages to test the effectiveness of our spectral correction
algorithm. The atomic numbers of the three materials: Nylon, TEFLON, and PVC before and after
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(a) Photoelectric image without destreaking

(b) Photoelectric image with destreaking

(c) High-energy CT image, note that < --- points to the folded sheet explosive simulant

(d) Z image from photoelectric image without destreaking

(e) Z image from photoelectric image with destreaking

Fig. 4. A folded sheet explosive (simulant) concealed inside a radio cassette player. (a) the photoelectric image without
destreaking, window= 1000, level= 400; (b) the photoelectric image with destreaking, window= 1000, level= 400; (c)
high-energy CT image, window= 2000, level= 1000; (d) The Z image computed using the photoelectric image without
destreaking and the high-energy CT image, window= 1000, level= 600; (e) The Z image computed using the destreaked
photoelectric image and the high-energy CT image, window= 1000, level= 600; Note that the value in the photoelectric image
is the measured photoelectric coefficient multiplied by10−5; the value in the Z image is the measured effective atomic number
multiplied by 100.

the correction are shown in Table 5. The spectral correction reduces the variation range of the atomic
number from 1.83 to 0.26 for Nylon, from 2.09 to 0.21 for TEFLON, and from 2.60 to 0.25 for PVC.
The reduction of the variation range of the atomic number measurement is about 90%.

We also performed the same test for five scanners. The results are summarized in Table 6. For each of
the three materials, we show the mid-range value and the range of the atomic numbers before and after
the spectral correction. The mid-range value is the average of the maximum and minimum values, and
the range is the difference between the maximum and minimum values. The spectral correction yields
about 90% variation range reduction on all five scanners, with the mid-range values varying within 0.11
atomic number units for all three materials.

These experimental results demonstrate that our spectral correction algorithm is effective in compen-
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Table 5
Testing results of the spectral correction on one scanner. This table lists the effective
atomic numbers of different materials before and after the spectral correction. The
spectral correction reduces the variation range of the atomic number measurements
from 1.83 to 0.26 for Nylon, from 2.09 to 0.21 for TEFLON, and from 2.60 to 0.25
for PVC. The reduction of the variation range of the atomic number measurements
is about 90%

Test DC AC Nylon TEFLON PVC
# (KV) (KV) before after before after before after
1 140 40.0 6.69 6.64 8.13 8.21 14.33 14.53
2 140 38.0 6.17 6.62 7.68 8.23 13.87 14.55
3 135 40.0 6.96 6.63 8.50 8.23 14.85 14.55
4 127 40.0 7.52 6.53 9.18 8.13 15.80 14.43
5 130 40.0 7.32 6.62 8.93 8.22 15.45 14.53
6 132 40.0 7.19 6.64 8.77 8.24 15.20 14.53
7 137 40.0 6.86 6.64 8.37 8.24 14.67 14.57
8 125 40.0 7.57 6.40 9.31 8.03 15.99 14.32
9 140 36.0 5.74 6.63 7.21 8.19 13.40 14.52
10 140 37.2 6.03 6.65 7.51 8.22 13.69 14.55
11 140 38.8 6.12 6.39 7.72 8.11 13.97 14.49
12 140 39.6 6.45 6.55 7.91 8.15 14.10 14.50
13 142 39.2 6.29 6.55 7.74 8.15 13.89 14.49
14 143 38.8 6.18 6.53 7.59 8.11 13.72 14.45

Table 6
Testing results of the spectral correction on five scanners. This table shows the mid-
range values and variation ranges of the atomic number measurements of different
materials scanned on different scanners. It shows that the spectral correction reduces
the variation range of the atomic number measurements for about 90% on all five
tested scanners

scanner # 1 2 3 4 5
Nylon mid-range before 6.65 6.36 6.63 6.22 6.73

after 6.52 6.62 6.63 6.60 6.63
range before 1.83 1.93 2.06 2.88 2.04

after 0.26 0.29 0.52 0.47 0.47
TEFLON mid-range before 8.26 8.16 8.27 7.90 8.30

after 8.14 8.25 8.21 8.20 8.23
range before 2.09 1.88 2.29 2.68 2.25

after 0.21 0.30 0.43 0.28 0.33
PVC mid-range before 14.70 14.51 14.62 14.36 14.65

after 14.44 14.55 14.51 14.53 14.55
range before 2.60 2.40 2.68 2.87 2.71

after 0.25 0.21 0.29 0.17 0.17

sating the atomic number measurement for the x-ray spectral drift on individual dual energy CT scanners
and for the beamline components variation across scanners.

4. Discussion

In this paper, we have described our dual energy techniques, which have been applied to a commercial
dual energy CT scanner for explosive detection in checked luggage. Although the dual energy techniques
presented in this paper are developed particularly for our CT scanner, we believe these techniques can
be extended to other types of scanners, such as dual energy CT scanners using sandwich detectors.
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Fig. 5. X-ray spectra used in the dual energy decomposition for all the scanners.

The constrained decomposition method does not depend on the particular scanner geometry or data
acquisition method of dual energy projections. The adaptive scatter correction algorithm uses projection
data itself to estimate scatter. The destreaking algorithm is also a data dependent process for removing
outliers, which represent inconsistencies in the projection data. Both algorithms do not require any
additional sensors or mechanisms, therefore, they can be extended and applied to other types of scanners
directly. The spectral correction algorithm requires a copper filter mounted over some detectors on the
detector array. The same algorithm can also be applied to the dual energy CT scanners with sandwich
detectors, though the filter material may have to be reselected.

Conversion gain and charge collection efficiency of detectors are different for high and low energy
x-ray data. This difference is compensated by a series of correction operations performed separately
for high and low energy x-ray data before input to the dual energy decomposition. The series of
correction operations include offset correction, air correction, and monitor correction. The relatively
lower collection efficiency of the low-energy projections leads to noise in the photoelectric image, which
is compensated for by the adaptive filter and the destreaking algorithms.

Although the image quality of the Z images has been improved significantly using the described
methods in this paper, the Z images still yields much lower image quality than the CT images due to the
weak photoelectric effect in the total detected x-ray signal. For the purpose of object segmentation, the
CT images are used as a primary source, while the Z images are used as a secondary source.

The dual energy CT scanner using the techniques described in this paper has passed the TSA explosive
detection certification test with a lower false alarm rate than a comparable single energy CT scanner,
demonstrating the effectiveness and sufficiency of our dual energy techniques for explosive detection.
However, it is difficult to directly relate the image quality and the precision of the measurements to the
performance of the explosive detection.

The methods presented in this paper may not provide optimal solutions to the problems addressed in
this paper. However, it is the authors’ belief that the methods presented in the paper will shed a light for
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future improvement and further investigation into dual energy computed tomography techniques for the
detection of explosives and other prohibited materials.

5. Conclusion

In this paper we have presented our dual energy CT techniques applied to explosive detection, including
constrained dual energy decomposition, adaptive scatter correction, nonlinear filtering of decomposed
projections (destreaking), and real-time image-based correction for x-ray spectral drifts. Experimental
results using simulated and real data have demonstrated that the constrained decomposition method
reduces approximation and boundary constraint errors; the adaptive scatter correction and destreaking
algorithms improve the quality of atomic number images for explosive detection in terms of mean
atomic number, cupping effect, and signal to noise ratio; the image-based spectral correction method
compensates the atomic number measurement for the spectral drift of the scanner. Further extensions of
the work including optimizing dual x-ray energies including HVPS waveforms for explosive detection
and correcting heavy metal artifacts in the atomic number image are under investigation.
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Appendix 1: Dual energy CT scanner

The CT scanner used for developing the dual energy techniques described in this paper is a commercial
24-row, third-generation scanner (Model AN6400, Analogic Corporation, Peabody, MA), specifically
designed for checked luggage screening. The dual energy data acquisition uses the x-ray source spectrum
switching mechanism [20]. The voltageV (t) generated by a high voltage power supply (HVPS) and
applied to the x-ray tube for generating dual energy x-ray spectra is a sinusoidally modulated waveform,
defined as follows:

V (t) = Vdc + Vac sin(2πft) (33)

where the nominal values areVdc = 140 KV, andVac = 40 KV; the waveform frequencyf = 540 Hz
is one half of the view sampling frequency. The high energy views and low energy views are acquired
in an alternating fashion; that is, when the sinusoidal modulation wave is in the positive half-cycle, a
high energy view of projection data is acquired; when the sinusoidal modulation wave is in the negative
half-cycle, a low energy view of projection data is acquired.

Table 7 also shows the geometry and reconstruction parameters of the dual energy CT scanner. Note that
the multi-slice helical image reconstruction uses the Nutating Slice Reconstruction (NSR) algorithm [46].
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Table 7
Scanner geometry and reconstruction parameters

Parameter Description
Configuration Third-generation, multi-slice (24 rows)
Source-to-isocenter distance 833.4 mm
Source-to-detector distance 1326.26 mm
Field of view 850 mm diameter
Rotation speed 90 RPM
Conveyor belt speed 150 mm/sec
Number of detectors 252 detectors× 24 rows
Number of views/rotation 360 high energy and 360 low energy
Pixel size 2 mm× 2 mm
Slice spacing 3.33 mm

Appendix 2: Commputing Z images

In this appendix we describe how we compute the Z (effective atomic number) image for explosive
detection. The dual energy CT scanner generates dual energy projections. We use the high energy
projection to reconstruct a CT image for explosive detection. We use the decomposed photoelectric
projection to reconstruct a photoelectric image, and use the CT image and the photoelectric image to
compute a Z image.

The effective atomic number is the estimate of the hypothetical single element with the same density that
will give the same x-ray attenuation as the substance being evaluated. Given the material’s composition,
the effective atomic number is defined as follows [11,12,47]:

Zeff =

(∑
i

Zi/Ai∑
j Zj/Aj

Zn
i

) 1
n

(34)

wherei (or j) is the index of the individual element in the composition,Zi is the atomic number of
the individual element in the composition, andAi is the atomic weight of the individual element in the
composition.

Given the measurements of Compton coefficientac and photoelectric coefficientap, the effective
atomic number, denoted asZac, can be calculated as follows [14]:

Zac = K ′
(
ap
ac

) 1
n

(35)

whereK ′ andn are constants. The value ofn has been a subject of controversy in the literature, but is
generally agreed to be between 3 and 4 [17,48].

However, using Eq. (35) for calculating the effective atomic number requires two back-projections,
one for the Compton image and the other for the photoelectric image. The back-projection is one of the
most computationally intensive modules in the CT reconstruction. It is not practical for a reconstruction
system to have two back-projections for the atomic number image and one back-projection for the CT
image from cost and system complexity point of views.

In order to reduce the computational cost, we use the CT image to replace the Compton image in
computing the effective atomic number, denoted asZhct, as follows:

Zhct = K
(
ap
ahct

) 1
n

(36)



254 Z. Ying et al. / Dual energy computed tomography for explosive detection

whereK andn are constants, andahct is the CT number of the scanned materials.
Since the Z image is computed by dividing the photoelectric image by the high energy CT image, the

partial volume effect is canceled out in the Z image. This is an important feature for sheet explosive
detection.

Appendix 3: Specira generation

The x-ray spectra used for dual energy decomposition on all scanners were simulated according to
the scanner’s design specification. The energy-dependent attenuation coefficients for the filtration in
the beamline were obtained using the XCOM program [49]. The filtration in the beamline for the dual
energy scanner described in Appendix 1 includes 0.2 mm thick beryllium, 0.5 mm thick steel, 1.524 mm
thick tunnel graphite, and 4.318 mm thick tunnel foam (C2H4).

The x-ray beam spectra were modeled using the XSPECW2 program [50], which generates an x-ray
spectrum corresponding to an input of the DC voltage. We discretized one cycle of the sinusoidal HVPS
voltage into 100 samples. For each sample of the voltage, XSPECW2 was used to generate a spectrum.
The 50 x-ray spectra corresponding to the negative sinusoidal waveform were averaged to generate the
low energy spectrum, and the 50 x-ray spectra corresponding to the positive sinusoidal waveform were
averaged to generate the high energy spectrum. The final x-ray spectra used in our decomposition are
shown in Fig. 5. Note that the spectra in the figure are normalized, i.e.,

∑
E S(E) = 1.
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