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Streaking artifacts in tomographic images reconstructed by the  filtered-backprojection algorithm are caused 
by aliasing errors in the projection data. T o  show this a computer simulation study was performed in which 
the  transforms of undersampled projections were subtracted from the  corresponding transforms when the 
projection data were taken with a very large number of rays. This yielded the aliased spectrunl for the un. 
dersampled case. Ail image was reconstructed from the  difference transforms. Streaks present in this 
image exactly matched those present in the  undersampled reconstruction. (The  numher of projections used 
in this study was large enough to preclude any artifacts caused by their insufficient number.) We have de. 
rived a theoretical upper bound for the  energy contained in these aliasing artifacts. In  this paper we have 
also briefly touched upon the artifacts caused by other algorithmic aspects of a tomographic system. 

The mathematics necessary to obtain tomographic 
recoi>structic~ns from integral projection data using 
filtered-hackprojection techniques has been known for 
m:iny years.l In a computer implementation two un- 
realistic conditions must be satisfied to obtain exact 
images. Ooe is that an infinite number of projections 
is needed, and the second is that the data have to be 
sampled at  infinitely small invervals. An approximate 
image can be formed if only a finite number of projec- 
tions, sampled at a finite number sf points, are used. Id 
is this deviation from the theory that this paper will 
address. I1 should be noted that only algorithm de- 
pendent artifacts will be considered. Implementation 
artilacts, such as beam refraction for the ultrasonic case, 
and pr~lychromaticity (beam hardening) and photon 
noise for the  x-ray ease will not be discussed because, 
lootrely speaking, they are independe~lt of the algorithm 
arrif'acts. For a recent discussion of many of the im- 
l)lementation artifacts the reader is referred to Ref. 2. 

11. Conventional Wpprsxima%lons 

In this section the often used approximations needed 
t o  implement the filtered-backprojection algorithm in 
a diicrete environment will be described. Our discus- 
sion here focus on reconstructions from the parallel 
projection data. 

'l ' l i t .  ; r a~ i~oi . s  iirr wit11 I'urduc Univt.rsit?-. School of'Electrica1 En- 
gl:irtl.ing. \ i -est  i,;if;iyrltc. Iiicii;lua 47907. 

Xecei~  ed 26 6May 1979. 
noo:i-s9~c.~l;91,1:i703-088~oo.5010. 
c 1979 Optical Society of'il,merica. 

Consider a 2-D function g(x , y ) .  A parallel projection 
at  angle B is given by 

~ 1 0 . t )  = JI J-: # ( X , J ) B ( ~  c o s ~  + 3 sinti - i)d,dj (11 

If the projections are known for ail H between zero and 
T ,  the function can be exactly reconstructed by 
backprojecting filtered versions of the projections. The 
filtered projections are given by 

where S(6,J)  is the Fourier transform sf P(N,t) given 
by 

The  operation of backprojection for reconstructing 
g (x,y) is described by 

Equation (4) presupposes that an infirsite number of 
projections from 0 to n are known. Equations (2) and 
(3) imply that the projections are known at an infinitely 
small sampling interval. To  reduce the amount of in- 
formation the following assumptions are made. 

Instead of trying to obtain the tomogram for the en- 
tire plane only a circle of radius T is reconstructed. 
Drstortions occur if the image is not zero outside of this 
region. Most applications have the object to be scanned 
immersed in air or water. The projection data are 
normalized to zero for ray paths that include only the 
air or water. This simplification will cause no problems 
unless the projections are not properly normalized.' 

Since the image is zero outside the circle the projec- 
tions, P(O,t), are also zero for ( t  j > T. To obtain the 
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exact image an infinite number of samples are needed 
the interval It 1 5 T .  If the projections are ap- 

pRjhimately bandlimited, S(B J )  -- 0 for 1 f / > B, then 
,f more than 4RT samples are used practically all the 
,,gl~ificant information about the projections can be 
,,,overed using the sampling theorem. Let N be the 
,,,,mber of samples. The samples, P, 4,(B,i), can be re- 
lated to the original projection as folllows: 

obtain the sample locations we first divide the in- 
terval 2T into N parts each of width T. The samples are 
located at  the midpoints of these intervals. 

If the projections are assumed to be of finite hand- 
.;dth R and finite order (which means that the entire 
\,andlimited signal may be represented by a finite 
,,umber of samples taken a t  the Nyquist rate), the 

Q, (B,i) of the filtered projections, Q ( O , t ) ,  can 
he obtained from the sampled projections by replacing 
the Fourier integrals in Eqs. ( 2 )  and (3) by discrete 
Fourier transforms. This procedure is outlined in Ref. 
: I ,  and the result is 

where S,(B,k) is the discrete Fourier transform of 
?,(d,i): 

N - l  
S,,($,k) = P,(O,i) exp (7) 

r = o  

Note that Eq. (6) implies a circular convolution between 
the sampled projection data and the inverse discrete 
Fourier transform of the sequence I k [(2U)/N]  1 for K = 
- (N /2 ) ,  . . . , 0 ,  . . . , (N/2)  - 1 (assuming N is an even 
number). Equations (6) and (7 )  can be evaluated using 
fast Fourier transforms (FF'T). Crawford and Mak4 
have shown that because of aliasing of the filter in the 
space domain, Eqs. (6) and ( 7 )  will cause a dc shift and 
dishing similar to beam hardening in the final recon- 
struction. 

An alternative implementation is obtained by only 
invoking the assumption of finite bandwidth. Now 
since the projections are bandlimited, it does not matter 
what the filter in Eq. (2) is for [ / I  > % j ~  Letting it be 
zero 

H ( f )  
= If l ,  If1 sf3 
= 0, elsewhere 

( 8 )  

This corresponds to the follovsmng impulse response in 
the spatial domain: 

If everything is sampled at  the Nyquist rate, T = 1/(2B), 
one can show using Eq. 42) that the samples of the fil- 
tered prc?jections are given by 

where the second equality follows from the fact that 
each sampled projection P, is zero outside the range 
(0,N - 1) for its index. The sampled function h ,  (1) is 
obtained by substituting t = /I- in Eq. (9): 

h,(l) = U2, 1 = 0 

= 0, 1 even 

4H' 
( 1  1) 

- -- - 
l"2' 1 odd 

Fquation (10) implies that in order to know &,(B,t) 
exactly at  the sampling points the length of the se- 
quence h, ( 1 )  used should be from 1 = --(N - I) to 1 = (N 
- I). It  is important to realize that the results obtained 
by using Eq. (10) are not identical to those obtained by 
using Eq. (7). This is because the discrete Fourier 
transform of the sequence h, ( 1 )  with 1 taking values in 
a finite range [such as when 1 ranges from -(N - 1) to 
(N - I)] is not the sequence 1 k [(2B)lN] I. While the 
latter sequence is zero a t  k = 0, the UFT of h, (1) with 
I ranging from -(N - 1) to (N - I) is nonzero a t  this 
point. 

The discrete convolution in Hq. (10) rnay be imple- 
mented directly on a general purpose computer. 
However, it is much faster to implement it in the fre- 
quency domain using FFT algorithms. [By using spe- 
cially designed hardware, direct implementation of Eq. 
(10) can be made as fast or faster than the frequency 
domain implementation.] For the frequency domain 
implementation one has to keep in mind the fact that  
one can now only perform periodic (or circular) convo- 
lutions. The convolution required in Eq. (10) * IS ape- 
riodic. To eliminate the interperiod interference arti- 
facts inherent to periodic convolution we pad the pro- 
jection data with a sufficient number of zeros. I t  can 
easily be shown5 that if we pad P, (i) with zeroes so that 
it is (2N - 1) elements long, we avoid interperiod in- 
terference over the N samples of $,. Of course, if one 
wants to use the base 2 FF'T algorithm, which is most 
often the case, the sequences P, and h ,  have to be 
zero-padded so that each is (2N - I):! elements long, 
where (2N - 112  is the smallest integer" that  is a power 
of 2 and that is greater than 2N - 1. Therefore, the 
frequency donlain implementation rnay be expressed 
as 

Q0(nr) = T X IFFT{FFrrjl'N(n~) with ZPj 
X IFFTh(nr) with ZPU, (12)  

where FFT and IFFT denote, respectively, fast Fourier 
transform and inverse fast Fourier transform; ZP stands 
for zero padding. One usually obtains superior recon- 
structions when some smoothing is also incorporated 
ixa Eqs. (1 0) or (12). For example, in Eq. (1 2) smooching 
may be implemented by multiplying the product of the 
two FFTs by a Hamming window. 

The unsarnpled filtered projection, Q(O,t), can be 
recovered exactly by Bow-pass filtering. In practice this 
is too computationalby expensive, and linear interpo- 
lation is used. The relation is 
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Number of  p r o j e c t  ions 

K 

I''i::. I .  Sixteen reconsi ruci ior i  of an ellipse for various vtrlues of K anti N. 'l'li(> rec~ol~strt~c~litrr~!,  were wil~douirtl  !'or the p?rr.po~,c~ ol' tii:;l)l;i\ I I I  

bring orit tiit. a1iasi:ig stre:lks :ind 111c;iri. ariifacts. 

projectnons, w?ing Eqs (4) arlt-8 (Id) wc e r t  for the ae 
~ ' ( 0 , t )  = ( C U  - [ < Y ] ) Q , ( H , I N I )  + ( 1  - (Y t [ < V I ) W , ( B , I ( Y I  + 1 )  ( 1,1) constructed image g'(n,y) 

t + - ( T P ~ )  
0 = 7( k-1 

T ,I  (X 7 ) = y Q'(0, x ( 0>OL t 3 51110z)  
I< , -0 

where Q' as a linearly interpolated approxrmatitan to Q, 1. ( I  1) 

and [ t u ]  as the greatest integer less than or equal Lo t u .  
'r 

(1, = 1 - 

The next simp8ificatiasn is the replacemen1 of the K I 
integral in Eq. (4) with a ournmatron. This is needed 'I'his npproxxmatitan t / v ~ i  hs wrll  w s a i h r L 1  the nubnber of 
hecause 1n any real system there can only be a finite projectloni is large, whrch i\ o ~ u a l i y  the CRSC 111 most 
number of projections. 16 there are K equally spaced tomtagrapknnc inragralg yrhtrsla., If w e  h:ii only a Ilrnlted 
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,,umber of ~ ~ ~ O ~ ~ ~ t ~ O l l 9  there nnay be helter approxi.. 
b nation^." 

 ation ion (14) is valid for any point ( x , y ) ,  hut only a 
finite i ~ u n d ~ e r  of picture pc~inta can he reconstructed in 
;, ,-()mput,er. in?plenaentad,ion. Since the picture is zero 
,,,,tside of a circle of radius T only a square of dirnen- 
,ions 27' I I ~  2T will be coilsidered. This will be sampled 

M:i points. 'The cliscred,e reconstructeci image, de- 
,loted by g:,, is then relat,ed to g ' (x ,y )  as follows: 

,here f = (27')/M. 
In \tirrnrnary, thesc aj?pnoximaB ions have been made: 

the projections a] rl  spatially limited and handlimited; 
the filtered prcqecsi6ms can he r~covered using linear 
Interpolatat)n, a f in i te nrxmber of projectior~s can be used 
to make an accurate reconslauction; and the tinal image 
can be reprrser-aled by a finite number of points. 

111. Effeds of the  Apprsximationo 

Fieure 1 shows sixteen windowed reconstructions of 
d n  ellipse wnth varaous valtles of K (number of projec- 
tlons) anti AT (nurrsher of sa~mlples per projection). 
Figure 2 i~ a graphical depictson of the numerical values 
on the irlrddle I~orizcaxrtal line5 tllsourl-a two 06' the re- 
const ructiorns. 'The fo%Xolwing degradations are evident: 
(;ihbs phenomenon, s%rpaks, and xnrjir6 patterns. 
These effects will now be related to tire ap~iiroximat~or~s 
made in tlae ~revioris section. 

A funtl;ame~risl problem with these images and in 
general ;lily iosnograykaic -pictures is that usually the 
ohjecti are not liBandlIimited. Whrra a nc~nbandl in~i td  

functiola is samuled or when a bandlimited function is 
sampled helow its Nyquist rate, the portion of the 
spectrum above the Nyquist frequency is folded hack 
into the lower freouencies. 'This causes the function to 
be bandlimited and also have aliasing errors in it. 

Backprojection is a linear process so the final image 
can he thought to be made up of two f u ~ t i o n s .  One is 
the image made from the handlimited projections de- 
graded by linear interpolation and the finite number of 
projections. The second is the image made from the 
aliased portion of the spectrum in each projection. 

The aliased  ort ti on of the reconstruction can he seen 
by itself by subtracting the transforms of the sampled 
projections from the corresponding theoretical trans- 
forms ofthe original projections. Then if this result is 
filtered as hef'ore the final reconstructed imaee will he 
that of the folded over spectrum. We perFormed a 
computer simulation study along these lines for an el- 
liptical object. In order to present the result of this 
study we first show in Fig. 3(a) the reconstruction of an 
ellipse for N = 64. (The number of projections was 51 2 
and will remain the same for the discussion here.) We 
subtracted the transform of each uroiection for the N 

1 .z 

= 64 case from the corresponding transform for N = 
1024 case. The latter was assumed to be the true 
transform because the prciections are oversampled (at 
least in comuarison with the N = 64 case). The re- 
cc,nstruc&ion obtained from the difference data is shown 
in Fig. 3(b). Figure :l(c) is the bandlimited image ob- 
tained by subtracting the aliased spectrum image of Fig. 
3(h) frorn the complete image shown in Fig. 3(a). Fig- 
ure 3(c) is the reconstruction that would be obtained 
provided the projection data for the N = 64 case were 
truly band-limited (i.e., did not suffer from aliasing 
errors after sampling). 'I'he aliased-spectrum recon- 

1 .  2. 'This figure i s  a g~apiiicwl c!epic.tion o t ' t l~e  nunier~cal values 011  the rnidtllr horizorltal lines in two ol't,he rrconstcttct ioi is in Fig. I. 'I'lle 
j:ji;getl I i n ~ i i  are tIhe i~ecoir:siructed vnluiei  while Llic strai!:ht line$ arc t h e  true values: (a) N = 64, li = 512; (11) N = 512, K = 51 2. 
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Fig. 3. (a) Iteconst,ruct,ion of an ellipse with N = 64 and K = 512. (b) Hecoiistruclion i'roni only t.he aliaseti frcqncncies in e:rch projrction. 
Notr that  the  streaks exactly match those in (a). (c) Image obtained by subtracting (1)) from (a). 'I'his is the rec.o~lstri~ci,ion that  woultl be 

obtained provided t h e  da ta  for the  N = 64 case were t ruly bandlimited. 

struction in Fig. 3(b) and the absence of streaks in Fig. 
:l(e) prove our point that when the number of projec- 
lions is large, the streaking artifacts are caused by ali- 
asing errors in the projeclion data. 

Imaging systems are often clnaracterized by their 
point spread functions (PSP). For linear position- 
invariant systems s~sch a characterizatic~n is generally 
considered to be complete. However, for sampled 
systems this is not always true. Often the PSP will give 
no indication of object spectra deperldent artifacts such 
as the aliasing streaks discussed above. Fa)r example, 
for the K = 512, N = 64 case, the PSF is shown in Fig. 
4(b), while the recowrstructiomn of the ellipse for the same 
R and N is shown in the upper right-hand corner of Fig. 
I. While the PSF looks nice and smooth, the aliasing 
skreaks are quite evident in the ellipse reconstruction. 
[The PSFs in Fig. 4 were generated fo ra  point source 
located a t  the origin. Also, for each projection the 
(N/2)th ray passed through the origin.] 

The distortions that one can sea in the PSF are those 
that are totally intrinsic to the algorithm such as would 
be caused by an inadequate number of projection4, the 
effect of interpolation (which like aliasing depends upon 
N), and the display grid not being fine enough. 

The system will yield perfect images (sn the absence 
of aliasing) if the PSF has a single value at the origin and 
zero everywhere else. Because of the finite laandwid4 h, 
if K is infinite, the PSF will be the inverse Hankel 
translorm of' a disk of radius R. That  is, the PSF, de- 
noted by h ( x , y ) ,  will now b ~ >  given by the function 

where r = (X + 2)11Z. Clearly, the width of the main 
lobe is inversely related to the projection baridwidth R. 
This is also illustrated in Fig. 4 where the PSF for the 
N = 64 case has a wider main lobe than that  for the N - 512. 

Along with the main lobes, other structured noise can 
also be seen in some of the PSFs in Fig. 4. Brooks6 has 
shown that  this noise is caused by a finite K. He also 
showed that  if M is larger than [(I.Ix)/ia] N, the PSF is 
essentially noise free. This is confirmed in Fig. 4. It 
was shown by Shepp and Logan7 that for a fimaite K and 
infinite N the noise caused by the finite number of 
projectioras will go to infinity. 

The effects of interpolation can be ccsnrbined into the 
PSF. Oppenheim8 has shown that  interpolation can 
be seen as convolving the unsampled projection with a 
window. 'Phus by the Fourier slice theorem, the Fourier 
transform of the PSF without i~~terpolatiomn is multi- 
plied by the Fourier transform of the window rotated 
about the origin. The PSFs presented in Fig. 4 already 
include the effects of' interpolation. Because different 
interpolation windows effect the spectrum differently, 
t h ~ y  could enhance or suppress the aliasing errors. This 
has led some authors!) to attribute aliasing strealrs to 
interpolation errors. 

The last degradation in the inaages is rnoirc pat- 
terns.'() These can be seer1 in Pig. 1 where N = 517 and 
K - 64. 'File projection data now have a large band- 
width. However, the display grid is not fine enough to 
represent these high frequencies and 2-D aliasing takes 
place. It is interesting to note that t-wo different types 
of alias~ng artifacts may (~ccur in corraputerized tomog- 
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(6) ( d )  

Fig. 1. Point spread functions for some of the reconstructions in Fig. 1 

8 .  f iearuiemenf b a i d w i d t h  

U: Projecfio- bandwid th  

F p r o ~ e c t i o n  band -4 

Fig. 5. (a) A symbolic depiction of the aliasing distortion. S(H,f) is the trarisform i)f the true projection at ailg!e H .  (b) Some ot'tiie 1.ei1lii.titiol1 

of SiR,f) are h h ~ w i l  here. T h e  sum of' these replications is SiH. f ) .  
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raphy: those caused by undersampling of the projec- 
tion data and those caused by the display grid not being 
fine enough. 

iV. Upper Bound for Energy in Aliasing Streaks 

In this section an upper bound for the energy in the 
streaks for an elliptical object will be found assuming 
an infinite number of projections. Our interest in el- 
liptical objects stems from the mathematical tractability 
of this case and, also, because of their frequent use in 
compuier simulation work in tomography. 

Let S(O,f) be the Fourier transform of the samples of 
the projection a t  angle 0. It is related to the true 
transform by 

where B = 1/27, 7 being the sampling interval. Note that 
with the sampling interval 7 ,  B the measurement 
bandwidth of the system. Both S(8,f) and S(8,f) are 
illustrated in Fig. 5. For most cases of aliasing distor- 
tion the measurement bandwidth B is only slightly less 
than the projection bandwidth W ,  which is the case 
depicted in the figure. Now let SA(B,f) denote the ali- 
ased frequency components within the measurement 
bandwidth. It  is clear from Fig. 5 that SA(B,f) consists 
essentially of contributions made by the two, the first 
left and the first right, replications of the baseband 
spectrum. Thus we may write 

Let gA(x,y)  denote the reconstruction from only the 
aliased frequencies. The total energy in this recon- 
struction will be denoted by EA and may be defined 
as 

Using the Fourier slice theorem and Parseval's theorern 
Eq. (19) becomes , 

Since we are interested in aliased frequencies within the 
measurement band only we may write 

Now an object consisting of a single ellipse at  the or. 
igin of major and minor axes given by 2R and 2 8 ,  re. 
spectively, is mathematically described by i 

~(X,Y),~, K2+ '2<1  
I 

R 2  s 2 -  
= 0, elsewhere 

(22) 1 

's 
The projections, P(B,t), of this object are given by I 

1 

\--, 
= 0, elsewhere 1 

where a2 = R2 cos28 i- S 2  sin20. The Fourier transform \ 
of P(0,t) is given by f 

where 91(0) is the Bessel function of order one. 
Nearf = B and f = -B the function [ J1 (x ) j / x  can be 

we11 approximated by its asymptotic form: 1 

-0.0406 4---------r------?-.--- T - r--~- --vi--------9 

I5.OPOQ PB.0009 60.8000 BB.QQ08 * . O D 8 8  45.60D0 P B . O O O Q  88 .8800 S,R.$?+Q 

f requency  ( f )  + 

Fig. 6. This figure illustrates the  fact tha t  beyond the limits of the measurement bandwidth in the  frequency domain, the Bessel function 
can be well approximated by its asymptotic form. (In this case the measurement band is from f = - 16 to f = 16.) The solid curve corresponds 

to the exact result obtained by using Eq. (24); and the dashed curve is based on the  approximation in Eq. (25). 
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illustrate the reasonableness of this approximation 
,ider the case of the ellipse in Fig. 3 whose dimen- , are given by R = 0.2 and S = 0.1. Now let us select 
0.1 since this corresponds to the projection with the 

bandwidth. Let us say we have 64 samples 
per projection and let the value of T be 1. Therefore, 

= 2/64 and B = '127 = 16. Hence the measurement 
band is given by -16 < f < 16. The solid curve in Fig. 
6 is a plot of S(0, f )  as given by Eq. (24) for 16 < f < 32; 
nl,d the dashed curve is obtained by using the approx- 

in (25). Since in our experiments the 64 sam- 
ples represent a highly undersampled case, and since the 

approximation gets better as N is increased, 
,,sing (25) is a good approximation for discussing ali- : asing Using (24) and (25) we write for s( f  - 2B) at  

" frequencies f < B: 
ii 

for f < R (26) 

A similar asymptotic expression can be written for S(f 
+ 2B) at  frequencies f > -B: 

R S  
S(fl,f + 2B)  - cos 27ra(?A + f )  - - 

. x [a(28  + f)lv2 I 4 

for f > -R. (27) 

We will now assume that the measurement bandwidth 
is large enough so that in the baseband spectrum 
frequencies above 2B do not contribute to aliasing. 
That is, for practical purposes we may write B < W < 
2B. [Note that this assumption is consistent with ours 
including only two replications in Eq. (P8).] Therefore, 
we can ignore the energy in S(B,f - 2B) and S(O,f + 2B) 
at frequencies f < 0 and f > 0, respectively. With this 
assumption substitution of (26) and (27) in (18) leads 
to 

Substituting Eq. (28) into Eq. (21) 

( 2 B  - f )"  

The inner integral can be reduced to 

The integral in (30) can be bounded in absolute value 
by l l(4B) so the integral in (29) reduces to 

The integral in (31) can be evaluated using identities 
found in Ref. 11. 

where /3 = (1 - (S/R)2)1'2 and where E[x j  is an elliptic 
integral defined as 

The value of the upper bound in (31) [or (32)] lies in its 
functional dependence on the parameters of the size of 
the ellipse. This upper bound led us to an interesting 
conclusion (verified eventually by computer simulation) 
that  although a larger ellipse is more low-frequency in 
character, the enengy in its aliasing streaks should be 
greater. The intuitive justification for this is the fact 
that  as an ellipse gets larger, in its frequency domain 
representation its energy increases a t  all frequencies 
including those that contribute to aliasing. The reader 
may note that for any give SIR as an ellipse is made 
larger, although E A  increases, the normalized streak 
energy given by EAIrRS will decrease. The factor TRS 
is the energy in the ellipse itself. Also (31) [or (32)] lead 
to the expected conclusion that the energy in the streaks 
is bounded from above by a function that is inversely 
related to the bandwidth, which implies that it is in- 
versely related to the number of sample points. This 
is seen in Fig. 1 in the last column where the streaks die 
out as N increases. 

In computerized tomography based on filtered- 
backprojection algorithms, streaks are caused by ali- 
asing errors introduced when the projection data are 
undersannpled. These aliasing streaks are different 
from (and, in addition to) the streaks caused by an in- 
sufficient number of projections. 

This work was partly supported by the NIH grant 
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