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Abstract-A convolutional backprojection algorithm is derived for a
fan beam geometry that has its center-of-rotation displaced from the
midline of the fan beam. In single photon emission computed tomog-
raphy (SPECT), where a transaxial converging collimator is used with
a rotating gamma camera, it is difficult to precisely align the colli-
mator so that the mechanical center-of-rotation is colinear with the
midline of the fan beam. A displacement of the center-of-rotation can
also occur in X-ray CT when the X-ray source is mispositioned. Stan-
dard reconstruction algorithms which directly filter and backproject
the fan beam data without rebinning into parallel beam geometry have
been derived for a geometry having its center-of-rotation at the midline
of the fan beam. However, in the case of a misalignment of the center-
of-rotation, if these conventional reconstruction algorithms are used to
reconstruct the fan beam projections, structured artifacts and a loss
of resolution will result. We illustrate these artifacts with simulations
and demonstrate how the news algorithm corrects for this misalign-
ment. We also show a method to estimate the parameters of the fan
beam geometry including the shift in the center-of-rotation.

I. INTRODUCTION
cAN beam reconstruction algorithms were derived

based on the assumption that the mechanical center-
of-rotation is colinear with the the midline of the fan beam
[1]. This type of scanner is depicted in Fig. 1. In some
situations it is not possible to align the midline with the
mechanical center-of-rotation. Fig. 2 depicts a scanner in
which the center-of-rotation is displaced from the midline
of the fan beam. Misalignment can occur in single photon
emission computed tomography (SPECT) when a fan
beam collimator is used with a rotating gamma camera
[2]-[4] or in X-ray CT when the X-ray source is mispo-
sitioned.

In SPECT imaging a converging collimator is used to
increase the sensitivity over that of a parallel hole colli-
mator without sacrificing resolution by mapping the emit-
ting organ onto a larger portion of the detector. The col-
limator holes in the transverse reconstructed image plane

Manuscript received June 20, 1985; revised November 21, 1985. This
work was done while the first author was with the General Electric Coi-
pany, Medical Systems Business Group, Applied Science Laboratory, Mil-
waukee, WI 53201.

G. T. Gullberg is with the Department of Radiology, University of Utah,
Salt Lake City, UT 84132.

C. R. Crawford is with the General Electric Company, Medical Systems
Business Group, Applied Science Laboratory, Milwaukee, WI 53201.

B. M. W. Tsui is with the Department of Radiology and Curriculum in
Biomedical Engineering. University of North Carolina, Chapel Hill, NC
27514.

IEEE Log Number 8407243.

y

CENTER -
OF

ROTATION

Fig. I. Ideal fan beam geometry for a curved detector.

are tapered and are designed to converge to the same focal
point. The holes themselves are formed from corrugated
sheets of lead that are glued together and stacked one upon
the other. This gives holes which converge in each trans-
axial plane and are straight and parallel in the longitudial
direction. The collimated projection events are detected
using a flat Nal crystal with its associative electronics.
The fan beam projections are digitized with equal spacing
along the line AB shown in Fig. 2.

In designing and constructing a converging collimator,
it may be difficult to align the collimator holes with the
mechanical center-of-rotation as is depicted in Fig. 2. In
some cases it may happen that the collimator holes have
completely different focal points. It is also possible that
the misalignment is a function of angle. It has been our
experience 14], that the latter two cases produce variations
that are less than can be detected by the resolution of the
gamma camera. In this paper we assume that all colli-
mator holes focus to a single point and that the misalign-
ment is constant over angle.

Third-generation CT scanners use a curved detector ar-
rangement where the detectors are placed at equal inter-
vals on an arc concentric with the source. An example of
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Fig. 2. Fan beam geometry with a displaced center-of-rotation for a flat
detector.

this geometry is shown in Fig. 1. Here the center-of-ro-
tation is colinear with the midline of the fan beam. The
case where there is a displaced center-of-rotation is de-
picted in Fig. 3. The common terminology for the curved
detector arrangement is that the data are sampled with
equal angles, where as for the flat detector the data are
sampled with equal spacing.
When data from a misaligned system are reconstructed

without taking into consideration the shift in the midline,
there will be a loss of resolution for 360 degree recon-
structions [5]. For halfscans [6], which are reconstruc-
tions from projections sampled over 180 degrees plus the
fan angle, structured artifacts will result [7]. In the par-
allel beam case, it is possible to simply shift the projec-
tion prior to processing in order to account for the new
center-of-rotation [8]. However, the fan beam case for a
flat detector cannot be corrected by a simple shift, unless
of course the fan beam projections are rebinned [91 into
parallel beam projection sets. Rebinning, however, is
computationally expensive and it degrades resolution.
Fan beam algorithms for geometries other than the stan-

dard configuration are also available. Horn described re-
construction algorithms for arbitrary fan beam geometries
for the case when the midline is colinear with the center-
of-rotation [101. Weinstein described a scanner where the
focus-to-center distance is a function of rotation angle
[11]. However, the results of these papers are not extend-
able to the misaligned scanner described here.

In this paper a convolutional backprojection algorithm
is derived which corrects for the misalignment of the fan
beam for both a flat detector and a curved detector. Sim-
ulations are given which show the effects of the shift and
demonstrate the new algorithm's ability to correct for the
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Fig. 3. Fan beamn geometry with a displaced center-ot'-rotation tor a curved
(ietector.

misalignment. A method is also developed to estimate the
parameters of the fan beam geometry including the shift
in the center-of-rotation.

II. DERIVATION FOR FILA1 DEI'ECTOR
The functionf(x, y) is used to denote the cross section

of an object to be reconstructed from its projections. The
function f(x, v) may be the distribution of the linear at-
tenuation coefficients for X-ray CT or the radiopharma-
ceutical concentration for SPECT. It is assumed that the
object is zero outside of a circle of radius R. A parallel
projection of f(x, v), p(6, t) is the collection of line inte-
grals through f(x, v) along the paths given by

t = x cos 0 + v sin 0 (I1)
for a fixed value of 0.
A polar coordinate version f(r, /), of the original func-

tionf(x, y), can be reconstructed from its projections using
Radon's inversion relationship

4 27rR

f(r, o) = 1/(4Ir2) P 1(0, t)l
O -R

* [r cos (6 -0) - t] dtd (2)

where p' is the partial derivative of p with respect to t.
The integral over t is the composite of the derivative and
Hilbert transform operators [12]. It can be shown thatf(r,
0) can be reconstructed using the following integral equa-
tion [12]:

f(r, k) = , p(O t)h(r cos ( -0) -t) dt dO

(3)
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where h(t) is the inverse Fourier transform of col12
h(t) satisfies

h(at) = h(t)la.

Consider the fan beam geometry depicted in Fig. 2
which the midline is displaced from the center-of-rotat
by T. A fan beam projection in this system is denoted
r(a, s). It can be seen from Fig. 2, that the fan beam
parallel projections are related as follows:

p(O, t) - r(a, s)

for
t = (s + 7)Z

0 = a + tan-l (sID)

where, for mathematical purposes, it has been assun
that the focus-to-detector distance D' is equal to the
cus-to-center distance D and

Z=D[s2+D21 12

Using (6) and (7) the reconstruction formula given
(3) for the parallel projection case can be implemented
the fan beam (a, s) space. The Jacobian for this transf
mation is

J(s, ce) = (D2 _ TS)Z3D-2

Using (6), (7), and (9), we arrive at

r2w
f(r, 4) r(a, s)(D2 TS)Z3D 2

o -w

h(r cos [tan (sID) + a -

-(s + T)Z) ds da

where W is the value of s for which r(a, s) = 0 with
> W in all the projections. The variable W is determii
by letting t = R in (6) and solving for s

W - (DR(T +DL R2)11 TD)/(D - R2).

The argument of the filter h in (10),

(r cos [tan-' (sID) + a - 0] - (s + T)Z),

can be reduced to

UZ(s -s) (13)

where

st= [rD cos (a - -TD]/[r sin (a - )+ D (14)

U - [r sin (a - k) + D]ID. (15)

Using (13) and (4) we see that

h(r cos [tan-' (sID) + a (/1 (s + r)Z)

-h(s' - s)!(UZ)2. (16)

The following is obtained when (16) is substituted into
(10):

f(r, O- q(a, s')/U da (17)
0

and where

(4) q(a, s') wr(a, s)

in * [(D - rs/D)/(D' + S-)1/2 h(s' - s) ds.
[ion (18)
lby
and Equation (17) represents a filtered backprojection algo-

rithm for equal spaced fan beam projections that have been
collected with a shift in the center of rotation.

(5) The following is a summary of the fan beam reconstruc-
tion algorithm.

(6) 1) Multiply each fan beam projection r(a, s) by [(D -
Ts!D)/(D2 + S2) 12j.

(7) 2) Convolve each weighted projection with h(s).
ned 3) For each pixel in the reconstructed image and for
fo- each filtered projection, determine the value of the filtered

projection at s' given in (14) and weight this value by U-2
(8) given in (15). Add the weighted filtered projection value

into the reconstructed image.
by It should be noted that the adaptation of the analytic

I in reconstruction algorithms to actual machine implementa-
for- tions can be done only with the introduction of approxi-

mations. The approximations deal with sampling consid-
erations with regard to the kernel used to filter the

(9) weighted projection data and the conversion of the sam-
pled filtered projections to continuously filtered projec-
tions [131. In practice, the convolution indicated in (18)
is performed using fast Fourier transform (FFT) opera-
tions incorporating the FFT of the filter h(s) and the FFT
of the sampled projections r(a, s). Because of noise and
aliasing, the filter is rolled-off using a suitable window.

1l0) Convolutional fan beam algorithms cannot be exactly de-
rived if a window is used. However, because the window

sl can be exactly incorporated into convolutional parallel
ned beam reconstruction algorithms, it has been correctly as-

sumed that the use of a window will not adversely affect
11) the quality of images obtained with the fan beanm algo-

rithm. The equation given in (17) can be combined with
material found in [6] to obtain a halfscan reconstruction

12) algorithm for projections collected with a displaced cen-
ter-of-rotation.

III. DERIVATION FOR CtJRVEPi) DF IFFCFOR

The curved detector geometry shown in Fig. 3 samples
each projection at equal angular intervals in contrast to
the flat detector geometry in Fig. 2 which samples at equal
spatial intervals. For the curved detector geometry at the
projection angle a the samples will be located at angles
v/D' where P is the coordinate along the curved detector
shown in Fig. 3. A fan beam projection in this system is
denoted by v(a, A). It can be seen from Fig. 3 that the fan
beam and parallel projections are related as follows:

(19)p(0, t) = v(ae, -)
for

t = D sin (¢/D) + T cos (g/D)
0 = a + vID

(20)

(21)
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where, for mathematical purposes, it has been assumed
that the focus-to-detector distance D' is equal to the fo-
cus-to-center distance D.
Using (20) and (21) the reconstruction formula given

by (3) can be implemented in the fan beam (a, ¢) space
for a curved detector. The Jacobian for this transforma-
tion is

J(¢, a) = cos (tID) - (rlD) sin (tID). (22)

Using (20), (21), and (22), we arrive at

f(r, =))= X v(a, ~)[cos (tID) - (TID) sin (rID)]ro -x

* h(r cos Jt/D + a - ] -D sin (¢/D)
- T cos (tID)) dvda (23)

where

X = D tan' (WID) (24)

and W is given in (11).
The argument of the filter h in (23),

rcos [fID + a -4] D sin (tID) - rcos (ID),
(25)

can be reduced to

E sin (¢'ID -rID) (26)
where

E = ([r cos (a - 4)) _ r]2

+ [r sin (a - 4) + D]2)"2 (27)

= D tan] [(r cos (a- 4) -OT)

/(r sin (a - O) + D)]. (28)

Using (4) and (26) we see that

h(r cos [I/D + a - 4] - D sin (lID) - T cos (tID))

= h(D sin (r'ID - rID))D2/E2. (29)

The following is obtained when (29) is substituted into
(23):

27r

f(r, ) = g(a, ¢')D2/E2 da (30)

where
x

g(a, ') = v(a, t)[cos (tID) - (TID) sin (lID)]

h(D sin (t'ID -tID)) d¢. (31)

This gives a filtered backprojection algorithm for equal-
angle fan beam projections that have been collected with
a curved detector and a shift in the center-of-rotation.
The following is a summary of the fan beam reconstruc-

tion algorithm. -
1) Multiply ,ach fan beam projection v(a, ¢) by cos (tI

D) - (rlD) sin (tID).

Fig. 4. Phantom used in the computer simulation studies.

TABLE I
DESCRIPTION OF THE ELLIPSES USED TO CONSTRUCT THE PHANTOM SHOWN

IN FIG. 4.

Origin Semi-Major Axes Rotation
Ellipse X Y X Y Angle Density

1 0mm 0mm 25 mm 25 mm 0 1532 HU
2 0 0 23 23 0 -532
3 10 0 3 3 0 266

2) Convolve each weighted projection with h(D sin [¢/
D]).

3) For each pixel in the reconstructed image and for
each filtered projection, determine the value of the filtered
projection at ¢' given in (28) and weight this value by D21
E2 where E is given in (27). Add the weighted filtered
projection value into the reconstructed image.

For the curved detector case it would be a simple matter
to rotate the r coordinate system so that the midline of the
fan beam goes through the center-of-rotation. Then con-
ventional convolutional algorithms could be used (i.e., r
= 0). However, the distance to the center-of-rotation
would not equal the distance D shown in Fig. 3. If filtered
backprojection algorithms are implemented in hardware,
parameters such as D may be hardwired. If the algorithm
is implemented as derived here, then it would not be nec-
essary to modify any hardware for shifts in the center-of-
rotation.

IV. COMPUTER SIMULATION RESULTS

A computer program was written to generate the X-ray
line-integral data for the phantom shown in Fig. 4. A de-
scription of the ellipses used to construct the phantom can
be found in Table I. An equal-angle configuration (see
Fig. 3) with a point source and a point detector was sim-
ulated with a focus-to-center distance D of 630 mm, a
focus-to-detector distance D' of 1100 mm, and a detector
spacing of 0.2 mm. Data were generated for 1000 projec-
tions with 768 samples per projection.

Fig. 5 shows a normal 512 x 512 reconstruction, with
a pixel size of 0.125 mm, of projection data generated
without a shift in the center-of-rotation. Fig. 6 is the same
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Fig. 5. Normal reconstruction of the phantom. Fig. 8. Halfscan reconstruction of shifted data without compensation for
the shift.
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Fig. 6. Halfscan reconstruction of the phantom.

Fig. 7. Normal reconstruction of shifted data without compensation for the
shift.

as Fig. 5 but now a halfscan reconstruction algorithm was

used. The subtle streaks and other structured artifacts are

due to aliasing and an insufficient number of views.
Line integral data were then generated for the case when

the center-of-rotation was shifted by 1 mm. The normal
and halfscan reconstructions of the data, without correct-
ing for the shift in the center-of-rotation, are shown in
Figs. 7 and 8, respectively. Structured artifacts are clearly
seen in Fig. 8. The loss of resolution that occurs when
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Fig. 9. Cross sections through the small off-center object from Fig. 5 (solid
line) and from Fig. 7 (dashed line).

shifted data are reconstructed without compensation can
be seen more clearly in a density cross section through the
small off-center object in the phantom. Fig. 9 shows the
cross sections through this object from Fig. 5 and from
Fig. 7.

Finally, the normal and halfscan reconstructions of the
data, with correction for the shift in the center-of-rota-
tion, are shown in Figs. 10 and 11, respectively. It is clear
that the new reconstruction algorithm corrects for a shift
in the center-of-rotation.

V. ESTIMATION OF FAN BEAM PARAMETERS
In parallel beam systems it is relatively easy to take

calibrating measurements to determine the shift in the
center-of-rotation. This is done by using a point source
and taking complementary views 180 degrees apart. The
projection of the center-of-rotation onto the image plane
is determined by summing the centroids of the projected
point source and dividing by two. A small source of ra-
dioactivity is used in SPECT as the point source and a pin
of highly attenuating material is used in X-ray CT.
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Fig. 10. Normal reconstruction of shifted data with compensation for the
shift.

Fig. 12. The estimated parameters for the fan beam geometry.

R(a, ,) = 6(Q - c)(xo sin a -yo cos a + D)ID'

- Xo COS a - yo sin a + T).

For the angle a, the centroid of a projection is p(a) de-
fined by

Fig. 11. Halfscan reconstruction of shifted data with compensation for the
shift.

In this section we show a method for measuring the pa-

rameters of the fan beam geometry shown in Fig. 12. The
parameters are the displaced center-of-rotation r, focus-
to-center distance D, focus-to-detector distance D', and
the location c, of the projection of the focus onto the de-
tector. For the purpose of estimating the parameters, the
projection coordinate t denotes the distance from the edge
of the measurable detector region. Mathematically, we use

f(x, y) = 6(x - xo) 6(y - Yo) (32)

for a point source located at (xo, yo) to develop a relation-
ship between the parameters of the fan beam geometry
shown in Fig. 12 and something we can measure, namely,
the centroids of the projected point source.

The fan beam projection operator 114] for the geometry

in Fig. 12 is

R(a, t) = f(x y)

6(Q - c) (x sin x- y cos a + D)ID'

-x cos a -y sin (x + r) dx dy. (33)

The projections of the point source are obtained by sub-
stituting (32) into (33)

p(a) = R(u, ,), dtIl R(a, i) d,. (35)

Substituting (34) into (35) and integrating, we obtain

p(a) = D'(xo cos a + yo sin a - r)l

(xo sin a -yo cos a + D) + c. (36)

The result in (36) gives an expression for the projected
centroid of a point source in terms of the fan beam param-

eters. This suggests a method to estimate the geometry of
a fan beam system. In practice, a point source is placed
in the field of view of the scanner. Projections of the point
source are collected and the centroid ji is calculated for
each angle a; using (35). The parameters of the fan beam
geometry can be estimated by minimizing the chi-square
function

x2(Xo, yo, D, D', c, T) = E i - p(ai)]2 (37)

where p(ca1) is given in (36). The process of minimizing
(37) to determine estimates of the fan beam geometry is
a nonlinear estimation problem which can be solved using
the Marquardt algorithm [15].

VI. SUMMARY

A method has been shown for determining and correct-
ing for shifts in the center-of-rotation of a fan beam com-

puted tomographic system. The projection data are pre-

(34)
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processed by multiplying by weighting factors which
incorporate the displacement of the center-of-rotation. The
modified projections are filtered and then backprojected
correctly into a coordinate system whose center-of-rota-
tion is displaced from the midline of the fan beam. The
algorithm has been verified with computer simulations and
has been implemented on a SPECT system showing good
results with both patient and phantom studies 141.
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