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Abstract. Three-dimensional filtered backprojection uses filters generally specified in the Fourier 
domain. Implementing these filters by direct sampling in the Fourier domain produces an artifact 
in the reconstructed images consisting primarily of a oc shift. ’This artifact is caused by aliasing 
of the reconstruction mer .  We have developed a filter constmuion technique using Fourier 
domain oversampling, which reduces the artifact A method to constmet the filter efficiently 
without the need to create and store the entire oversampled filter “ay  is also presented. 
Quantitative accuracy in  filtered backprojection is of particular impor” in multiple-pass 
algorithm used to reconstruct data from cylindrical PET scanners. We are able to implement 
such algorithms without fitting the reprojected views to the scanner data. 

1. Introduction 

Artifacts, consisting of an image amplitude shift and low-frequency shading, occur in two- 
dimensional filtered backprojection when the band-limited ramp filter is sampled directly 
in the Fourier domain (Kak and Slaney 1988, Crawford 1991). These artifacts are absent 
when the filter is computed in the space domain. The artifacts are caused by aliasing that 
occurs because the inverse Fourier transform of the filter, its point spread function, has 
infinite extent. The magnitude of the shift is proportional to the integrated amplitude of the 
imaged object. 

The filters used in three-dimensional filtered backprojection, such as those developed 
by Colsher (1980), must also be band limited to implement the reconstruction with sampled 
data. If the filters are sampled in the Fourier domain, a similar shift artifact will be expected 
in the reconstructed image. In this paper we demonstrate this shift artifact in images 
reconstructed using filters sampled in the Fourier domain. 

While a shift artifact is detrimental to any quantitative image reconstruction, it is of 
particular concern in PET reconstructions using the two-pass algorithm originally suggested 
by Pelc (1979) and implemented by Kinahan and Rogers (1989), since this algorithm utilizes 
data estimated from a reconstructed image to complete the truncated projection views. Even 
a small DC shift in the preliminary image would create a large shift in the forward-projected 
views used by the algorithm. Previously reported implementations of this algorithm have 
included a linear regression step to determine a scale factor and offset to align the forward- 
projected information to the scanner data (Townsend er al 1991, Cherry er al 1991). 

There are several methods to eliminate this artifact in two-dimensional reconstruction, 
which could be extended to three-dimensional reconstruction. Kak and Slaney (1988) and 
Crawford (1991) compute the filter in the space domain, then transform the filter to the 
Fourier domain for efficient implementation of the filtering operation. Crawford (1991) 
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derives correction factors for the low-frequency terms of the filter based on the aliased 
portions of the point spread function. Both of these methods require a closed-form space 
domain representation of the reconstruction filter. Although Kinahan et a1 (1988) have 
presented the space domain representation of the Colsher filter, and Defrise et al (1993) 
have determined filters for a large class of valid reconstruction filters, their equations contain 
singularities, which make practical implementation impossible. This paper presents an 
alternative filter construction method that effectively eliminates the image artifact. 
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2. Theory 

We extend the description of the shift artifact in 2D image reconstruction by Crawford (1991) 
to 3D image reconstruction. Consider the task of filter the 2D projection p ( u ,  U), which is 
sampled at an interval a in the &-direction and b in the u-direction. The projection of the 
imaged object is contained within an ( M / 2  x N / 2 )  pixel region on p(u ,  U). Although we 
may implement the convolution as a pointwise multiplication in the Fourier domain, an 
accurate reconstruction requires that p(u ,  U) be convolved with a filter function h(u, U), 
where h(u, U) is the inverse transform of the reconstsuction filter H(r ,  s). Since p(u,  U) is 
sampled, H ( r , s )  is band limited in frequency to r < 11/2al,s < 11/2bl. An ( M  x N)-point 
set of samples of the filter function is required to avoid circular convolution artifacts in the 
filtering of the projection (this is an extension of the 1D filtering result presented by Kak 
and Slaney (1988)): 

h‘(i, j )  = h(ia, jb )  (1) 

where - (M/2)  < i < (M/Z) and - ( N / 2 )  < j < (N/2) .  In practice, M and N are usually 
extended to the next power of two and the fast Fourier transform (FFT) is used. 

Since, as previously stated, h(u, U) is unavailable, the FFT of h’(i, j ) ,  X’(wi, oj), must 
be obtained by another means. Direct sampling of H ( r ,  s), defined by the equation 

Hramp(wi. oj) = H ( o i / a M ,  oj/bN) (2)  

where - ( M / 2 )  < oi c ( M / 2 )  and -(N/2) < oj < ( N / 2 ) ,  produces a filter response 
which is an aliased version of the desired point spread function: 

m m  

hSmp(i, j )  = Lj)} = h((i + a r ~ ) a ,  ( j  + B N P ) .  (3)  
u=-mg=-m 

One term of this series, 01 = @ = 0, is the desired point spread response h’(i, j ) ;  the other 
terms contribute aliasing to the filter. 

The magnitude of h(u, U) decreases quickly away from the origin: Kinahan et al (1988) 
have demonstrated a -l/r3 dependence for the Colsher filter. If the values of M and 
N in equation (3) are increased, the aliasing caused by the 01 # 0, B # 0 terms, while 
not eliminated, will have less impact on h(i, j). This ‘oversampling’ of the filter may is 
accomplished by sampling H(r ,  s) more densely. Oversampling H(r ,  s) by a factor of k 
produces the may 

H ~ ( w ; ,  ~ j )  H ( o i / a k M ,  wj/bkN) (4) 
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where - ( k M / 2 )  < wi < ( k M / 2 )  and - (kN/2 )  < o, < ( k N / 2 ) .  The inverse bansform of 
the oversampled filter is 

for - ( k M / 2 )  < i < ( k M / 2 )  and - ( k N / 2 )  < j < ( k N / 2 ) .  
Like hmp above, hr is still aliased, but the aliasing effect will be decreased. We have 

found that oversampling by a factor of four d e s  the central M x N points of ha a sufficient 
estimate of h'(i, j )  for the purposes of PET reconstruction. 

3. Methods 

The steps to generate an M x N filter by oversampling are as follows: 

domain filter array of dimension kM x k N ;  

dimension k M  x k N ;  

(i) oversample the filter in the Fourier domain by a factor of k ,  producing a Fourier 

(ii) take the inverse 2D m of the oversampled filter to form a space domain array of 

(iii) extract a subarray containing the M x N points centred at the origin; and 
(iv) to implement the filtering operation in the Fourier domain, take the 2D FFT of the 

subarray to produce the final Fourier domain filter array. 

Direct implementation of the oversampling technique may be hampered by the size of 
the oversampled filter array; if M = 512, N = 128 and k = 4, the oversampled array has 
2" elements. In addition, most of the kM x kN space domain array need not be computed, 
since only an M x N portion of the array is required. Fortunately, decimation of the.Fourier 
transform equation may be used to reduce the computation and storage requirements for 
the oversampling algorithm. We use a 2D variation of the transform decomposition method 
described by Sorensen and Burms (1993) for the 1D FFT. 

To demonstrate the decimation technique, define the desired space domain subarray to 
be h(u, U), 0 < U < M and 0 < U < N ,  and the oversampled filter array to be H(r, s), 
0 < r < k M  and 0 < s < k N .  Because the filters under consideration are all real and 
symmetric across both axes, it is only necessary to compute h(u, U) over one-quarter of the 
array area, where 0 < U < M / 2  and 0 < U < N / 2 .  

The inverse transform of the oversampled filter is given by the equation 

where Wz = e(-'%/'). Consider the substitution 

s = ( 2 k ) c + d  O < c < N / 2  O < d < 2 k  (7) 
which yields 

The portion in round brackets is the kM-point inverse m (m) of the (2kc + d)th row of 
the oversampled filter; the portion in curly brackets is the (N/2)-point m of a column of 
pixels drawn from those row inverse transforms. 

The following algorithm computes h(v,  U) for 0 < U < M / 2  and 0 < U < N / 2  based 
on equation (8). 
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Figure 1. One quadrant of the difference between a Colsher filter (axial angle of 4 O ;  maximum 
angle of 9") computed by direct Fourier domain sampling and fourfold ovenampling. 

(i) Create an M/2 x N/2 real array h, an M / 2 x  N/2 complex array S (a scratch buffer), 

(ii) For each d from zero to 2k - 1 
and a kM-element real vector U. Zero array h. 

- for each c from zero to N/2 - 1 

(a) create the (2kc + d)th row of the oversampled filter in vector U, 
(b) take the m of U, and 
(c) place the first M/2 complex values of the mnsfomed H into the cth row 
of S and 

- for each U from zero to M f 2 - 1 

(a) take the m of the uth column of S and 
(b) for each U from zero to N I 2  - 1, multiply the vth element of the transformed 
column data by (1/2k)W;$, and add the real portion to h(u, U). 

The total storage requirement for h,  S and H in this algorithm is aMN + kM floating 
point numbers, compared to the kZMN floating point numbers required to store the H array 
in the direct implementation. At this point, the one computed quadrant of h(u, U) is copied 
and reflected to fill the full h(u, U) array, and its forward (M x N)-point ZD FIT is taken to 
determine the Fourier domain filter for use in the reconstruction algorithm. 

4. Results 

Figure 1 is a surface plot of the difference between a Colsher filter generated by direct 
Fourier sampling and by fourfold oversampling. The greatest difference between the two 
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Direct Fourier sampling Four-fold oversampling 

Figure 2. Relative image amplitude d object centre for a set of cylinders reconstructed using 
Colsher filters created by (a) direct Fourier sampling and (b) fourfold oversampling. The 
transaxial diameter (right axis) and axial height Oefi axis) of the cylinder are varied. 

filters occurs near the origin and near the line on the filter plane corresponding to where 
the Fourier domain slice representing the projection intersects the double cone defined by 
the maximum acceptance angle. This is expected, since the filter has discontinuities in its 
slope at these locations. 

Sixteen different volumetric projection data se& (five circles of projection planes spaced 
by 2", 128 views per circle; 63 x63  points per projection plane, sampled spaced by 0.52 cm 
in each direction) were calculated for cylindrical objects whose diameters and heights ranged 
from 8 cm to 20 cm. Each cylinder was centred in the imaging field of view, and each 
was fully viewed in all projection planes. The data sets were reconstructed using Colsher 
filters created by direct Fourier sampling and also by fourfold oversampling onto an image 
grid of 0.5 cm voxels. The average voxel value in a 7 x 7 voxel region at the centre of 
the central image plane of each reconstructed image was calculated to determine the degree 
of shift artifact present in the reconstructed image. The results using directly sampled 
filters are shown in figure 2(a). Each of the reconstructed images has a negative amplitude 
shift relative to that of the smallest cylinder. Increases in cylinder size, either diameter or 
height, worsen the shift in the reconstructed image. The largest cylinder exhibited a shift of 
-2.6% relative to the smallest object. The results using the oversampled filters are shown 
in figure 2(b). There is no amplitude shift at the scale shown among the reconstructed 
objects; all recovery values were equal to within 0.1%. 

Using the oversampling technique, and taking appropriate care to preserve the 
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Figure 3. One completed projection plane from a Kinahan and Rogers reconstruction of a 
simulated cylindrical phantom with several conhasting inserts. The central 21 rows of the array 
are simulated scanner data; the top five and bouom five rows are reprojected from a preliminary 
reconsuuction of the phantom. 

multiplicative constants in the filtering process, we are able to generate images from which 
reprojected data can be estimated without the need for a fitting step to take place. Figure 3 
shows a surface plot of a completed projection view of a simulated cylindrical phantom 
containing several spheres of positive and negative contrast. The projection contains 89 x 37 
pixels; the central 27 rows are simulated projection data, the top five and bottom five 
rows are reprojected from a preliminary image of the phantom reconstructed using filters 
constructed by fourfold oversampling. If there were a shift artifact in the preliminary image, 
a discontinuity would be expected at the boundary between the projected and the reprojected 
data. Since no such discontinuity is seen, we can proceed with the full 3D reconstruction of 
the phantom without a fitting step. 

5. Conclusion 

Duect Fourier domain sampling of the reconstruction filters used in 3D filtered backprojection 
produces an image artifact consisting primarily of a DC shifl in the output image. This artifact 
is caused by aliasing of the point spread response of the reconstruction filter. Constructing 
the filter by the oversampling technique described here reduces the artifact. We have found 
that oversampling by a factor of four effectively eliminates the artifact. A method to 
construct the filter efficiently without the need to create and store the entire oversampled 
filter array has been presented. Using oversampled filters, we are able to implement the 
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Kinahan and Rogers reconstruction algorithm without fitting the reprojected views to the 
scanner data. 
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