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This paper investigates a method of reconstructing images from energy-resolved CT data with
negligible beam-hardening artifacts and improved contrast-to-nosie ratio �CNR� compared to con-
ventional energy-weighting methods. Conceptually, the investigated method first reconstructs sepa-
rate images from each energy bin. The final image is a linear combination of the energy-bin images,
with the weights chosen to maximize the CNR in the final image. The optimal weight of a particular
energy-bin image is derived to be proportional to the contrast-to-noise-variance ratio in that image.
The investigated weighting method is referred to as “image-based” weighting, although, as will be
described, the weights can be calculated and the energy-bin data combined prior to reconstruction.
The performance of optimal image-based energy weighting with respect to CNR and beam-
hardening artifacts was investigated through simulations and compared to that of energy integrat-
ing, photon counting, and previously studied optimal “projection-based” energy weighting. Two
acquisitions were simulated: dedicated breast CT and a conventional thorax scan. The energy-
resolving detector was simulated with five energy bins. Four methods of estimating the optimal
weights were investigated, including task-specific and task-independent methods and methods that
require a single reconstruction versus multiple reconstructions. Results demonstrated that optimal
image-based weighting improved the CNR compared to energy-integrating weighting by factors of
1.15–1.6 depending on the task. Compared to photon-counting weighting, the CNR improvement
ranged from 1.0 to 1.3. The CNR improvement factors were comparable to those of projection-
based optimal energy weighting. The beam-hardening cupping artifact increased from 5.2% for
energy-integrating weighting to 12.8% for optimal projection-based weighting, while optimal
image-based weighting reduced the cupping to 0.6%. Overall, optimal image-based energy weight-
ing provides images with negligible beam-hardening artifacts and improved CNR compared to
energy-integrating and photon-counting methods. © 2009 American Association of Physicists in
Medicine. �DOI: 10.1118/1.3148535�
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I. INTRODUCTION

Recent advances in detector technology have enabled com-
puted tomography �CT� systems with energy resolving capa-
bilities. X-ray attenuation depends on photon energy, and this
energy dependence varies for different materials. Therefore,
the energy of a detected photon is an additional piece of
information that may be used to improve image reconstruc-
tion. Properly accounting for the incident polyenergetic spec-
trum has the additional benefit of eliminating beam-
hardening artifacts.

An energy-resolving detector with two energy bins �low
and high energies� enables simultaneous dual-energy acqui-
sition for material decomposition applications.1–3 Once de-
composed, monoenergetic images free of beam-hardening ar-
tifacts are possible.4 Depending on the chosen energy, the
monoenergetic images may be reconstructed without noise
penalty.4 An energy-resolving detector with three energy bins
enables K-edge imaging to improve the depiction of contrast
agents such as gadolinium.5,6

An energy-resolving detector with multiple energy bins
provides improved utilization of spectral information.7 Con-
ventional energy-integrating detectors weight each photon by

its energy, thereby assigning more weight to higher energy
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photons. A photon-counting detector assigns equal weight to
all photons. These weighting schemes are suboptimal be-
cause the contrast between materials is generally greater at
low energies. Ideally, a detector would give more weight to
the low-energy photons. An optimal energy-weighting
scheme was developed to maximize the contrast-to-noise ra-
tio �CNR� in x-ray projections.7 The optimal weighting
scheme weights all photons at a particular energy E propor-
tionally to the signal and inversely proportional to the noise
variance of the projection data at energy E.

Previous work has applied these optimal weights to simu-
lated and experimental energy-resolved CT data.2,3,8–10 In
these studies, energy-bin data were optimally weighted and
combined prior to log normalization and reconstruction.
This energy-weighting approach is referred to as optimal
“projection-based” energy weighting. Photon counting and
energy integrating are examples of suboptimal projection-
based weighting. Previous simulation and experimental stud-
ies demonstrated a 1.2–1.6 improvement in CNR for breast
CT imaging using optimal projection-based weighting.2,3 By
giving more weight to low energy photons, projection-based
weighting increases both the CNR and beam-hardening arti-

2,9
facts in the reconstructed image.
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Gleason et al., developed a small-animal CT system with
an energy-resolving detector and performed separate recon-
structions on the data in each energy bin.11 The authors sug-
gest a linear combination of the resulting energy-bin images
but did not recommend a specific weighting scheme. An op-
timal “image-based” linear combination was first proposed
by Niederlohner et al., in which the weights were calculated
numerically using the Downhill–Simplex method.12,13 While
the details of the iterative algorithm are limited, the work
demonstrated CNR comparable to optimal projection-based
weighting with a qualitative reduction in beam-hardening ar-
tifacts.

This paper further investigates the image-based energy-
weighting method that optimally weights and combines the
energy-bin images. Unlike the previously proposed iterative
algorithm, the weights proposed in the current study are cal-
culated analytically to maximize the CNR in the combined
image. For each energy-bin image, the optimal weight is pro-
portional to the contrast-to-noise-variance ratio �CNVR� in
the image. Because the energy-bin images are reconstructed
from data acquired by a narrow polyenergetic spectrum, and
because the energy-bin data are weighted and combined after
log normalization, beam-hardening artifacts are reduced
compared to conventional approaches. As will be described,
although the weights are conceptually derived from the re-
constructed energy-bin images, the weights can be calculated
prior to reconstruction and the data combined after log nor-
malization.

This paper first reviews the theory of the optimal
projection-based weights and then describes the theoretical
derivation and implementation of the optimal image-based
weights. Simulations are presented that compare the optimal
projection and image-based weighting schemes with respect
to CNR and beam-hardening artifacts for a breast and thorax
application. The CNR and beam-hardening effects are also
compared to images reconstructed from energy-integrating
and photon-counting detectors.

II. METHODS AND MATERIALS

II.A. Theoretical considerations

II.A.1. Projection-based optimal energy weighting

The line integral � estimated by a conventional polyener-
getic CT acquisition is described in Eq. �1�, where No�E� is
the number of incident photons at each energy E, w�E� is the
energy-dependent weight, and ��l ,E� is the energy-
dependant linear attenuation coefficient of the object along
ray path l,

� = − ln��w�E� · No�E�e−���l,E�dldE

�w�E� · No�E�dE
� . �1�

For example, w�E�=E for energy-integrating detectors
and w�E�=1 for photon-counting detectors. Previous work
proposed optimal weights for maximizing the CNR between
a projection through background material and a projection
through background material with an embedded contrast el-

2,7
ement of length d. The optimal weights are proportional to
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the CNVR of the projection data and are expressed in Eq.
�2�, where �b and �c are the linear attenuation coefficients of
the background and contrast element materials, respectively.
As is evident in Eq. �2�, the optimal weights depend on the
specific task,

w�E� =
1 − e−��c�E�−�b�E��d

1 + e−��c�E�−�b�E��d . �2�

In practice, energy-resolving detectors separate the in-
coming photons into discrete energy bins. Previous studies
have applied the optimal projection-based weights of Eq. �2�
to detectors with discrete energy bins.2,3,8–10 The estimated

line integral �̃pb is described in Eq. �3�, where M is the num-
ber of energy bins and Ei is the energy range of the ith bin,

�̃pb = − ln��i=1
M �wi · �Ei

No�E�e−���l,E�dldE�

�i=1
M wi · �Ei

No�E�dE
� . �3�

The weighting scheme described in Eq. �3� performs a
linear combination of the energy-bin data prior to log nor-
malization and reconstruction. Another approach for
projection-based weighting is to weight and combine the
energy-bin data after raw-beam normalization but before the
logarithm. This approach requires modified optimal weights
that are derived in the appendix. The results in the appendix
demonstrate that both forms of projection-based weighting
result in similar CNR and beam-hardening performance.
Therefore, the remainder of the paper considers the
projection-based weighting described in Eq. �3�.

II.A.2. Image-based optimal energy weighting

This paper investigates an optimal linear combination of
the reconstructed energy-bin images. The combined image is
expressed in Eq. �4� where M is the number of energy bins
and wi is the weight of the ith energy-bin image,

Imagecombined = �
i=1

M

wi · Imagei. �4�

In this discussion, the contrast is defined as the absolute
difference between the reconstructed attenuation coefficients
of two materials. The contrast in the ith energy-bin image,
Ci, is defined in Eq. �5�, where �c,i and �b,i are the recon-
structed attenuation coefficients of the contrast element and
background material in the ith energy-bin image. The con-
trast depends on the energy range of the bin,

Ci = 	�c,i − �b,i	 . �5�

The noise is defined as the standard deviation in a back-
ground region of the image. The noise standard deviation in
the ith energy-bin image, �i, depends on number of photons
detected in the bin and the spatial resolution. When an image
is weighted, both the signal and standard deviation of the
image are multiplied by the weight. When the images are
combined, the signals add and the variances add. The CNR

of the combined image is
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CNRcombined =
�i=1

M wi · Ci

��i=1
M wi

2 · �i
2�1/2 . �6�

This paper considers how to combine the M energy-bin
images in order to maximize the CNR of the final image. In
the absence of noise, all of the weight would be given to the
energy bin with the highest contrast �generally the low en-
ergy bin�. In practice, the data from the lowest energy bin are
generally noisiest because of the small number of detected
photons.

The derivative of the CNR of the combined image with
respect to the weight of the nth energy bin wn is

�CNRcombined

�wn
=

Cn · �i=1
M wi

2�i
2 − wn�n

2 · �i=1
M wiCi

��i=1
M wi

2 · �i
2�3/2 . �7�

A solution to this optimization problem is to weight each
image proportionally to CNVR. For example, the weight of
the nth energy-bin image is

wn �
Cn

�n
2 . �8�

When the weights of Eq. �8� are substituted into Eq. �7�,
the resulting expression is

�CNRcombined

�wn
=

�Cn − Cn� · �i=1
M �Ci/�i�2

��i=1
M �Ci/�i�2�3/2 = 0. �9�

Equation �9� proves that weighting each image propor-
tionally to the CNVR maximizes the CNR of the combined
image. The M weights are further constrained to have a sum
of one, as expressed in Eq. �10�. As in the case of the
projection-based weighting, the optimal weights are task de-
pendent,

wn =
Cn/�n

2

�i=1
M Ci/�i

2 . �10�

Assuming that the weights can be estimated prior to re-
construction �as will be described in Sec. II B 3� and assum-
ing a linear reconstruction algorithm such as filtered back-
projection, an equivalent result is obtained by weighting and
combining the energy-bin data after log normalization but
before reconstruction. In this case only one reconstruction of
the combined energy-bin data is required. In comparison to
the line integral estimated by projection-based weighting
�Eq. �3��, the estimated line integral after image-based

weighting �̃ib is

�̃ib = �
i=1

M

− wi ln��Ei
No�E�e−���l,E�dldE

�Ei
No�E�dE

� . �11�

II.A.3. Beam-hardening artifacts

In the case of monoenergetic x rays, the number of pho-
tons that pass through an object of thickness t and attenua-
tion coefficient � is described by the Beer–Lambert law,

−�·t
N = No · e . �12�
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The logarithm of the transmission varies linearly with ma-
terial thickness,

ln� N

No
� = − � · t . �13�

When polyenergetic data are acquired with conventional
energy-weighting schemes, the logarithm of the transmission
has a nonlinear dependence on thickness. Beam-hardening
artifacts occur because the reconstructed attenuation coeffi-
cient depends on the material thickness.14

Equations �3� and �11� express the line integrals estimated
by the projection and image-based energy-weighting
schemes. If the object is a homogenous slab of thickness t
and attenuation �, and each of the M energy bins detects
monoenergetic photons, the line integrals estimated by pro-
jection and image-based weighting are given in Eqs. �14� and
�15�,

�̃pb = − ln��i=1
M wi · No�Ei�e−��Ei�t

�i=1
M wi · No�Ei�

� , �14�

�̃ib = �
i=1

M

− wi ln�No�Ei�e−��Ei�t

No�Ei�
� = �

i=1

M

wi · ��Ei� · t . �15�

The line integral estimated by image-based weighting is
linear with material thickness, while the projection-based es-
timate has a nonlinear dependence on material thickness.

If the material thickness is known, the attenuation coeffi-
cient can be determined by dividing the estimated line inte-
gral by the thickness. The attenuation coefficients estimated
by projection-based weighting and image-based weighting
are expressed in Eqs. �16� and �17�,

�̃pb = − ln��i=1
M wi · No�Ei�e−��Ei�t

�i=1
M wi · No�Ei�

� ·
1

t
, �16�

�̃ib = �
i=1

M

wi · ��Ei� . �17�

The projection-based estimate of � depends on material
thickness, while the image-based estimate is independent of
thickness, thereby preventing beam-hardening artifacts. For
all slab thicknesses, the image-based estimate of � is the
weighted average of attenuation coefficients across energy.

The beam-hardening analysis in Eqs. �14�–�17� assumed
ideal monoenergetic x rays. The general image-based
weighting described in Eq. �11� is expected to reduce beam-
hardening artifacts because the log normalization occurs over
a narrow range of energies, thereby approximating the mo-
noenergetic case.

II.B. Simulation study

The purpose of the simulation study was to test the feasi-
bility of optimal image-based energy weighting and to com-
pare the performance to that of projection-based weighting
�optimal, photon counting, and energy integrating� with re-

spect to CNR and beam-hardening artifacts.
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II.B.1. Systems and phantoms

The image-based energy-weighting method was applied
to two CT applications: a thorax scan and a dedicated breast
CT acquisition. The simulation details are listed in Table I.
The breast CT phantom and simulation are similar to that of
a published optimal projection-based weighting study.2 All
studies simulated a 2D fan-beam geometry. The spectra were
modeled with an published technique.15 The chosen mAs
levels represent a breast CT scan with dose equivalent to
mammography and a typical thorax examination.16 The mAs
values were converted to the number of incident photons per
detector using typical photon fluence values for breast and
conventional CT acquisitions.16,17

The breast phantom consisted of a 14-cm-diameter disk
with the attenuation properties of 50% adipose/50% glandu-
lar tissue. The breast phantom contained three, 2-cm-
diameter contrast elements of adipose tissue, 0.28 g /cm3

CaCO3, and 2.5 mg /cm3 iodine. The contrast elements were
centered 4 cm from the phantom center. The thorax phantom
was based on the FORBILD thorax phantom with the addi-
tion of a 2-cm-diameter region of 7.5 mg /cm3 iodine located
in the heart and with the ribs and vertebrae removed to ac-
commodate the available CT simulation software.18 Material
compositions were based on ICRU Report No. 44 and the
attenuation coefficients were modeled with the NIST online
database.19,20

Monoenergetic fan-beam projections were calculated ana-
lytically at 20–90 keV in 0.5 keV increments for the breast
scan and at 20–120 keV in 0.5 keV increments for the tho-
rax scan. Poisson noise was added to each monoenergetic
projection with variance equal to the number of detected
photons at that energy. Only noise due to photon statistics
was modeled, as photon-counting detectors are expected to
have negligible electronic and detector noise.21

TABLE I. Simulated fan-beam system specifications.

Number of detectors
Pixel size
Source-to-isocenter distance �SID�
Source-to-detector distance �SDD�
Number of views
Spectrum
Raw incident photons per detector per view
mAs

TABLE II. Simulated detector energy bins.

Bin number

Breast �90 kVp spectrum� Range �keV�
Average �keV�

Thorax �120 kVp spectrum� Range �keV�
Average �keV�
Medical Physics, Vol. 36, No. 7, July 2009
II.B.2. Energy-resolving detector

The simulated detector was ideal in that it detected all
incident photons, performed perfect energy resolution, and
was unlimited in count rate.

The effect of the number of energy bins on CNR was
previously studied for optimal projection-based energy
weighting.2 The results demonstrated that increasing the
number of bins from 5 to 15 did not considerably improve
the CNR. Following the example of previous studies, five
energy bins were simulated with narrower bin widths at low
energies to better sample the spectrum. Table II lists the en-
ergy ranges of the simulated bins for the 90 and 120 kVp
spectra. For the thorax acquisition, the width of the lowest
energy bin was chosen to include the k-edge in order to
reduce the effects of photon starvation, otherwise no attempt
was made to optimize the bin widths. The average energy of

each of the i bins, Ēi, which is used to calculate the optimal
weights, was estimated as the mean energy of the unattenu-
ated spectrum detected by the bin �Eq. �18��,

Ēi =
�Ei

E · No�E�dE

�Ei
No�E�dE

. �18�

Energy bins that did not detect photons �i.e., photon starved�
were set to 0.5 prior to log normalization. To quantify the
magnitude of photon starvation, the percentage of photon-
starved pixels in each energy bin was calculated.

II.B.3. Optimal image-based weights

The optimal image-based weights, proportional to the
CNVR, must characterize the energy dependence of the con-
trast and noise variance in the images. Numerous methods
are available for estimating contrast and noise in a recon-

Breast Thorax

2048 2048
0.4 mm 0.4 mm
60 cm 54 cm
80 cm 95 cm
500 500
90 kVp, 2 mm Al 120 kVp, 6 mm Al
32 400 150 000
39 250

2 3 4 5

28 28–36 36–48 48–58 58–90
.3 32.5 42.2 53.2 67.5
35 35–45 45–60 60–90 90–120
.0 40.1 53.1 70.8 99.8
1

20–
25

20–
31
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structed CT image, and two methods for estimating the con-
trast and two methods for estimating the noise variance were
investigated.

Recall that in this work, the contrast is defined as the
difference in the linear attenuation coefficient of two materi-
als. The contrast of a specific task can be measured through
regions of interest �ROIs� in the reconstructed energy-bin
images, however, suitable regions may be difficult to locate
in clinical images. Therefore, two alternative methods for
estimating contrast were investigated. The contrast of a spe-
cific task in a particular energy-bin image can be calculated
in advance from known linear attenuation coefficients and
stored in a lookup table. The average attenuation coefficient
of a material in the ith energy bin, �̄i, is expressed in Eq.
�19�, where ��E� is available in the literature, for example,
from Ref. 20,

�̄i =
�Ei

��E� · No�E�dE

�Ei
No�E�dE

. �19�

Calculating the weights based on look-up tables requires
prior knowledge of the imaging task to be optimized. A re-
construction may be desired that, while not optimal for spe-
cific tasks, provides a general improvement in image quality.
Previous work approximated the energy dependence of the
contrast as 1 /E3, where E is the average bin energy �Eq.
�18��.10 This function accounts for the energy dependence of
the photoelectric effect and is most accurate at low energies
and for materials with high atomic number. Another limita-
tion of this weighting function is that it does not characterize
the K-edge effect. While limited in accuracy, this approxima-
tion may be useful as a general method for calculating the
image-based weights.

The noise variance in the reconstructed image can be
measured in a ROI or it can be calculated from the projection
data. The noise variance of a reconstructed CT voxel is pro-
portional to the number of photons that pass through the
voxel and are detected as expressed in Eq. �20�, where �i

2 is
the variance of a voxel in the ith energy-bin image, m is the
number of views, and Nij is the number of detected photons
in the ith energy bin of the detector that samples the voxel in
the jth view,22

�i
2 � �

m
1

Nij
. �20�

TABLE III. Investigated weight-calculation methods.

Method Contrast estimate Noise variance es

A � look-up table Image based �RO

B � look-up table Projection based

C 1 /E3 Image based �RO

D 1 /E3 Projection based
j=1

Medical Physics, Vol. 36, No. 7, July 2009
In this study, Nij was calculated for the ith energy bin as
the mean number of detected photons in the central 100 de-
tectors of the jth view. For the ROI based noise estimate, the
standard deviation was calculated in a 25�25 pixel ROI ex-
tracted from the background breast and heart regions for the
breast and thorax simulations, respectively. A limitation of
both of these methods is that they characterize the noise vari-
ance in a region of the image. However, the weights must
reflect the energy dependence of the noise variance, which is
expected to be fairly constant throughout the image. Table III
summarizes the investigated weight-calculation methods.
Methods A and B, which rely on look-up tables of attenua-
tion coefficients, are task specific, while methods C and D
are independent of task. Since the breast phantom contained
three imaging tasks, methods A and B were repeated three
times with weights optimized for each of the three contrast
elements. Methods B and D estimate the noise variance from
the projection data and can be applied prior to reconstruc-
tion, while methods A and C require reconstruction from
each energy bin. For the simulations described in this work,
all four methods were implemented by weighting and com-
bining the energy-bin data after reconstruction.

II.B.4. Projection-based weights

For comparison, images were reconstructed assuming
ideal photon-counting and energy-integrating detectors. In
these cases, the simulated monoenergetic projections were
weighted by E �energy integrating� and 1 �photon counting�
and combined prior to log normalization.

The energy-resolved data were also reconstructed with
optimal projection-based weighting. Because the optimal
projection-based weights are task dependent, three recon-
structions were performed for the breast phantom with
weights optimized for each of the three contrast elements.
For the thorax phantom, the optimal weights were calculated
to maximize the CNR between 0.75 mg /cm3 iodine and wa-
ter. The optimal projection-based weights were calculated
with Eq. �2� assuming the average attenuation coefficients of
Eq. �19�.

II.B.5. Image reconstruction and analysis

Images were reconstructed by filtered backprojection. A
Lak kernel and a ramp filter apodized by a Hanning window

e Task specific Multiple reconstructions

Yes Yes

20�� Yes No

No Yes

20�� No No
timat

I�

�Eq. �

I�

�Eq. �
with 8 lp /cm cutoff were employed to simulate both “bone”
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and “soft tissue” reconstructions. Images of a 40�40 cm
region were reconstructed with 0.5�0.5 mm pixels.

The various energy-weighting schemes result in different
reconstructed CT numbers. For example, energy-integrating
weighting, which more heavily weights the high energy pho-
tons, results in images with lower reconstructed CT numbers.
In other words, the different weighting schemes result in
images reconstructed at different effective energies. All re-
constructed images were converted to Hounsfield units
�HUs� using Eq. �21� which assumes an attenuation of water
equal to 0.2 cm−1. Based on this conversion, the recon-
structed HU value of water varied depending on the energy-
weighting scheme. To maintain the traditional definition of a
Hounsfield unit �i.e., water equal to zero, all other intensities
based on the fractional difference compared to water�, the
effective attenuation of water could be measured for each
weighting scheme and used in Eq. �21�. The CNR is unaf-
fected by the conversion to Hounsfield units,

HU = 1000 ·
� − 0.2

0.2
. �21�

The optimal image-based and projection-based weighting
schemes were compared with respect to CNR and beam-
hardening artifacts. For both the breast and thorax applica-
tions, 25�25 pixel ROIs were extracted from the contrast
element of interest and the background tissue. The back-
ground ROI was located at the same distance from isocenter
as the contrast element ROIs. The mean and standard devia-
tion of the HU values were determined in each ROI, and the
CNR calculated with Eq. �22�,

CNR =
	HUsignal − HUbackground	

�background
. �22�

To quantify the beam-hardening cupping artifacts in the
breast phantom images, reconstructions were performed
from noise-free data with optimal weights derived from data
with realistic noise. The percentage of cupping was quanti-
fied from the reconstructed values at the edge and center of
the phantom, as described in Eq. �23�,

%cupping = 100 ·
�edge − �center

�edge
. �23�

All simulations and reconstructions were repeated ten
times to determine statistically significant differences be-
tween the investigated weight-calculation methods �A–D�
and the energy-weighting schemes �optimal projection-based
and image-based weighting�.

III. RESULTS

All results pertain to images reconstructed with the
apodized ramp filter unless otherwise indicated.

III.A. Optimal image-based weights

Figure 1 displays the unweighted breast phantom images
reconstructed from each of the five energy bins. The noise

standard deviation and the contrast between the background
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breast tissue and the contrast elements are plotted in Fig. 2
for each energy bin. Similar trends were found in the thorax
simulation. Photon-starvation effects were evident only in
the lowest energy bin, with 0.7% of detector pixels measur-
ing zero counts in the breast simulations, and 4% in the
thorax simulations. The optimal image-based weights calcu-
lated by methods A–D are plotted in Fig. 3 for the breast
simulations and in Fig. 4 for the thorax simulations.

III.B. Reconstructed images

Figure 5 compares breast-phantom images reconstructed
with energy-integrating, photon-counting, optimal
projection-based, and optimal image-based energy weight-
ing. All images are displayed at the same window width of
2500 HU but with level corresponding to the HU value at the
edge of the phantom. Figure 5 also plots the profiles through
the CaCO3 contrast element reconstructed by each energy-
weighting scheme. Figure 6 displays thorax images recon-
structed by each of the energy-weighting schemes along with
profiles through the heart. Figure 7 displays images recon-
structed with the Lak kernel.

III.C. CNR comparison

The CNR between the contrast elements and the back-
ground was calculated for each weight-calculation method
and for all ten trials. A one-way repeated measure ANOVA
analysis on the CNR of each contrast element indicated sig-
nificant differences between the weighting methods �p
�0.0005�. Subsequent paired T-tests did not find a signifi-
cant difference in CNR between weights calculated by esti-
mating noise in the image data �Methods A and C� and
weights calculated by estimating noise in the projection data
�Methods B and D�. The task-specific weights �methods A
and B� provided a small �1%–6%� but significant improve-

FIG. 1. Breast phantom images reconstructed from the five simulated detec-
tor energy bins. Level �HU�: 750; width �HU�: 2250.

FIG. 2. Noise standard deviation and contrast between the phantom elements
and the 50% glandular/50% adipose breast background for each energy-bin

image.
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ment in CNR compared to the task-independent weights
�methods C and D� �p�0.05�. Table IV summarizes the im-
provement in CNR obtained by using the task-specific
image-based weights compared to the task-independent
weights for each contrast element. Since the differences be-
tween weight-calculation methods A–D were small, all fur-
ther image-based results were reconstructed with the weights
of method D.

Table V summarizes the improvement in CNR compared
to energy-integrating weighting. These results are in good
agreement with a published study of optimal projection-
based weighting whose results are also listed in Table V.2

Images reconstructed with the Lak kernel resulted in similar
CNR improvement factors �within 3% of the values in Table
V�.

The CNR values obtained by optimal image and
projection-based weighting were compared with a two-
sample T-test. Compared to optimal projection-based weight-
ing, optimal image-based weighting provided a small but sta-
tistically significant 1.15 improvement in the CNR of the
CaCO3 element �p�0.005�. No significant difference was
found between the optimal projection and image-based
weighting for the adipose and iodine contrast elements.

III.D. Beam hardening comparison

The beam-hardening cupping metric �Eq. �23�� resulting
from each energy-weighting scheme is listed in Table VI. To
further depict the differences in beam-hardening artifact, the

FIG. 3. Optimal image-based weights resulting from the eight weight-
calculation methods investigated in the breast CT simulation. For example,
the weights labeled Aadipose correspond to the optimal weights calculated
with method A for the specific task of optimizing the CNR between adipose
and breast tissue.

FIG. 4. Optimal image-based weights resulting from the four weight-

calculation methods investigated in the thorax simulation.
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central horizontal profile through noise-free reconstructed
breast phantom images is plotted in Fig. 8 for each energy-
weighting scheme. To facilitate comparison, the profiles of
reconstructed linear attenuation coefficients were normalized
to have a value of 1 at the edge of the breast phantom.
Figures 9 and 10 compare the beam-hardening artifacts in the
spine and sternum regions of the throax phantom for optimal
projection and image-based weighting.

IV. DISCUSSION AND CONCLUSIONS

The results of all experiments demonstrated that CT with
optimally weighted energy-resolved data increased the CNR
compared to energy-integrating and photon-counting detec-
tion. The results are in good agreement with a published
study of optimal projection-based weighting whose results
are also listed in Table V.2 Unlike the detector simulated in
the current study, the previous study simulated an energy-
discriminating detector with realistic energy resolution.

The task-independent weights provided nearly the same
CNR as the task-specific weights despite the limitations of
the 1 /E3 approximation. The benefits of using the task-
specific weights were small ��6% CNR improvement� with
the most benefit for the adipose and iodine elements. Overall,
the task-specific weights may be advantageous for low
atomic number materials or materials with K-edges in the
detected energy range. If task-specific weights are found to
be beneficial for certain applications, image-based energy
weighting has the additional advantage of easily varying the
weights at the time of display and across the field of view.

FIG. 5. �left� Breast phantom images reconstructed with energy-integrating
�EI�, photon counting �PC�, projection-based optimal weighting �PB�, and
image-based optimal weighting �IB�. The optimal projection-based weights
were optimized for the task of depicting CaCO3 in breast tissue. Level �HU�:
EI=105; PC=180; PB=450; IB=185; width �HU�: 2500. �right� Central
vertical profile through the CaCO3 element.

FIG. 6. �left� Thorax phantom images reconstructed with energy-integrating
�EI�, photon counting �PC�, projection-based optimal weighting �PB�, and
image-based optimal weighting �IB�. Level �HU�: EI=20, PC=40, PB
=150, IB=120. Width �HU�: 800. �right� Central horizontal profile through

the iodine element.
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The optimal image-based weighting scheme produced
negligible beam-hardening artifacts compared to all other
energy-weighting schemes. Image-based weighting im-
proved the CNR of CaCO3 by a factor of 1.15 compared to
optimal projection-based weighting, while no significant im-
provement was found for the CNR of adipose tissue and
iodine. These CNR results may be explained by the fact that
projection-based weights are optimized for maximizing the
CNR in the projection data, but the contrast and noise trans-
fer in a complex way through the logarithm. For example,
consider the expressions for the optimal projection and
image-based weights �Eqs. �2� and �8��. The numerators in
these expressions represent the contrast in the projection and
reconstructed image, respectively. When the size and con-
trast of the embedded element are small, exp�−��c�E�
−�b�E��d�
1− ��c�E�−�b�E��d �Ref. 2� and the numerators
of both expressions are equivalent to within the constant d.
In other words, when the contrast is small, as is the case for
the adipose and iodine elements in the breast simulation, the
contrasts in the projection and image follow similar energy
dependencies. When the contrast is large, as is the case for
the calcium element, the contrasts in the projection and re-
constructed image have different energy dependencies. Be-
cause the image-based weights take into account the energy
dependencies in the reconstructed image, improved CNR
may be possible.

Because the investigated reconstruction kernels were con-
stant across energy bin, the choice of reconstruction kernel
did not impact the relative CNR performance of the energy-
weighting methods. Further image quality improvements
may be possible by varying the kernel across the energy bins.

Future investigations of optimal image-based energy
weighting must consider the constraints of a realistic detec-
tor, for example, studying the effects of imperfect energy
resolution, detection efficiency, and limited count rates. The

TABLE IV. Improvement in CNR obtained with task-specific weights com-
pared to task-independent weights.

Adipose CaCO3 Iodine �breast� Iodine �thorax�

1.06 1.01 1.04 1.02

FIG. 7. Images reconstructed with the Lak kernel after projection-based op-
timal weighting �PB� and image-based optimal weighting �IB�. Level �HU�:
PBbreast=450, PBthorax=150, IBbreast=185, IBthorax=120. Width �HU�: 2500.
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effects of energy weighting on the scatter signal must also be
investigated. Any reconstruction that more heavily weights
low energy photons is expected to increase the effects of
scatter.12 Compared to optimal projection-based weighting,
image-based weighting may incur an additional scatter pen-
alty because scatter reduces the noise variance. The reduced
noise variance will lead to increased weighting of bins that
contain scatter. Additional simulation and experimental work
is required to quantify this effect. An alternative approach for
reconstructing images free of beam-hardening artifacts from
energy-resolved data is to generate monoenergetic images
using dual-energy methods. Future work must compare the
dual-energy and optimal image-based weighting methods
with respect to contrast and noise.

In summary, optimal image-based weighting of energy-
resolved CT data improved the CNR by factors of 1.15–1.6
compared to energy-integrating weighting and factors of 1.0–
1.3 compared to photon-counting weighting. Whereas opti-
mal projection-based energy weighting increased beam-
hardening effects, optimal image-based weighting provided
comparable CNR with negligible beam-hardening artifacts.
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APPENDIX A: ALTERNATE METHOD OF
PROJECTION-BASED ENERGY WEIGHTING

The projection-based weighting described in Eq. �3�
weights and combines the energy-bin data before the raw-
beam normalization and logarithm operations. For energy-
resolving detectors, it is also possible to weight and combine
the energy-bin data after normalization but before the loga-
rithm. The resulting estimated line integral is

TABLE V. CNR improvement factor compared to energy-integrating weight-
ing.

Weighting scheme Adipose CaCO3 Iodine �breast� Iodine �thora

Photon counting 1.11 1.16 1.16 1.25
Optimal image-based 1.15 1.50 1.31 1.57
Optimal projection-based 1.17 1.31 1.27 1.59
Optimal projection-based2 1.17 1.33 1.27 N/A

TABLE VI. Percent beam-hardening cupping artifact �Eq. �23��.

Energy integrating
�%�

Photon counting
�%�

Projection based
�%�

Image based
�%�

5.2 7.3 12.8 0.6
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�̃pb2 = − ln��
i=1

M

wi ·
�Ei

No�E�e−���l,E�dldE

�Ei
No�E�dE

� . �A1�

In this case, the optimal weights must be proportional to
the contrast-to-noise-variance ratio of the transmission �T
=N /No�. Consider two detector pixels: one detects Nb pho-
tons that travel through the background material and the
other detects Nc photons that travel through the contrast ele-
ment. The contrast in the transmission of these two beams,
Ctransmission, is equal to

Ctransmission = �Nc

No
−

Nb

No
� , �A2�

where we assume that both beams have the same number of
incident photons, No.

The noise variance of Ctransmission is equal to �transmission
2 ,

�transmission
2 =

�Nc

2

No
2 +

�Nb

2

No
2 =

Nc

No
2 +

Nb

No
2 . �A3�

The optimal weights for combining the transmission
energy-bin data are proportional to the contrast-to-noise-
variance ratio,

w�E� =
	Nc�E� − Nb�E�	
Nc�E� + Nb�E�

· No�E� . �A4�

The weights in Eq. �A4� are equal to the weights of Eq.
�2� multiplied by the number of incident photons at each
energy.

Following the beam-hardening analysis of Sec. II A 3 and
assuming monoenergetic energy bins and a homogeneous
slab object of attenuation � and thickness t, the line integral

FIG. 8. Normalized central horizontal profiles through noise-free breast
phantom images reconstructed with different energy-weighting schemes.

FIG. 9. Comparison of the sternum region in images reconstructed with
optimal projection-based and image-based weights. Level �HU�: PB=150,

IB=75. Width �HU�: 200.
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estimated by the alternate projection-based weighting
scheme has a nonlinear dependence on t as shown in Eq.
�A5�, leading to beam-hardening artifacts,

�̃pb2 = − ln��
i=1

M

wi · e−�it� . �A5�

The simulations described in Sec. II B were repeated with
this alternate method of projection-based weighting. The re-
sulting CNR and beam-hardening cupping values were
within 5% of the original projection-based results.

An interesting relationship between projection-based and
image-based weighting can be derived by comparing the es-
timated transmission values, which are obtained by exponen-

tiating the negative of the estimated line integrals �̃pb2 �Eq.

�A5�� for projection-based weighting and �̃ib �Eq. �15�� for
image-based weighting�. As seen in Eqs. �A6� and �A7�, the

projection-based estimate of the transmission T̃pb2 is a
weighted arithmetic mean of the energy-bin transmission

data, while the image-based estimate, T̃ib, is a weighted geo-
metric mean. The geometric mean is the more appropriate
estimate of central tendency when the measurements repre-
sent ratios, as is the case of transmission measurements,23

T̃pb2 = �
i=1

M

wi ·
Ni

No�Ei�
, �A6�

T̃ib = �
i=1

M � Ni

No�Ei�
�wi

. �A7�
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