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An inverse-geometry volumetric computed tomography �IGCT� system has been proposed capable
of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system
uses a large-area scanned source opposite a smaller detector. The source and detector have the same
extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding
cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The
algorithm first rebins the acquired data into two-dimensional �2D� parallel-ray projections at mul-
tiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is
performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new
method for correcting the gridding error caused by the finite and asymmetric sampling in the
neighborhood of each output grid point in the projection space. The reconstruction algorithm was
implemented and tested on simulated IGCT data. Results show that the gridding correction reduces
the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm
does not introduce significant artifacts or blurring when compared to images reconstructed from
simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the
method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as effi-
ciently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for
the same number of photons. Simulations of a resolution test pattern and the modulation transfer
function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm
isotropic resolution. The successful implementation of the reconstruction algorithm is an important
step in establishing feasibility of the IGCT system. © 2005 American Association of Physicists in

Medicine. �DOI: 10.1118/1.2064827�
I. INTRODUCTION

Conventional computed tomography �CT� systems are rap-
idly evolving to acquire increasingly thicker volumes per
circular rotation using multirow detectors or flat panel digital
detector technology. These volume CT approaches provide
several advantages over single slice acquisition, including
faster scan times, thinner slices, and reduced motion arti-
facts. The ability to scan an entire organ in one rotation could
have important clinical impact, for example, in perfusion
studies and other dynamic applications.

The increased volume thickness comes at the expense of
larger cone-beam angles. Because of the diverging x-ray
beam in the axial, or slice, direction, a circular scan cone-
beam acquisition does not acquire sufficient volumetric
data.1 Although approximate reconstruction algorithms are
commonly used,2 the resulting artifacts can be significant for
large cone-angles. While exact reconstruction is possible for
helical cone-beam scanning for certain pitch values,3–6 this
paper focuses on sufficient volumetric acquisition in one cir-
cular scan.

We have previously proposed a volumetric CT system that
can sufficiently sample a thick �on the order of several cen-
timeters� volume in one fast circular scan.7 This inverse-
geometry volumetric CT system �IGCT� uses a large-area
scanned source and an area detector with a smaller extent in

the transverse direction. The sampling is fanlike in the trans-
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verse direction, and in the axial direction the source and
detector have the same extent, providing sufficient volumet-
ric coverage and avoiding cone-beam artifacts. In addition,
the smaller detector area may provide significant advantages
over conventional cone-beam systems with respect to cost
and detected scatter radiation.

Previous work studied the feasibility of the IGCT system
with respect to sampling and photon flux and found it pos-
sible to sample a 30-cm wide field of view �FOV� with
15-cm volume thickness in less than half of a second.7 In
fact, the source scanning is sufficiently fast so that the scan
time is limited by gantry speed rather than sampling. Another
important feasibility question is whether the acquired IGCT
data can be reconstructed accurately �from an artifact per-
spective� and efficiently �from a noise perspective�. The pur-
pose of this paper is to present a reconstruction algorithm for
the IGCT system.

The data acquired by the IGCT geometry are very similar
to that from a multiring positron emission tomography �PET�
geometry. Therefore a PET reconstruction algorithm can be
used. As in a three-dimensional �3D� PET system, the IGCT
data consists of in-plane rays which connect each source row
to the opposed detector row, and cross-plane rays which con-
nect each source row to other detector rows. It is the in-plane
rays that ensure a sufficient dataset for accurate volumetric
reconstruction, while the cross-plane rays improve the

signal-to-noise ratio �SNR�.
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Numerous algorithms have been proposed for 3D PET.
One class of algorithms uses 3D filtered backprojection.8–10

The data are rebinned into 2D parallel-ray projections at
multiple tilt and view angles, and the central slice theorem is
used to derive appropriate filters in frequency space. The
filtered projections are then backprojected into the volume.
The IGCT reconstruction algorithm proposed in this paper
follows this 3D filtered backprojection approach. Although
this type of algorithm has been thoroughly studied for PET
imaging, the application to a CT system merits additional
research. CT produces images of higher spatial resolution
and lower noise than PET and therefore demands more ac-
curate reconstruction. Further, the process by which IGCT
data are converted for use by this type of algorithm has not
been explored.

The paper begins with a brief description of the IGCT
system, followed by an overview of the theoretical founda-
tion of the reconstruction algorithm. The key difference be-
tween the IGCT and 3D PET geometries is the ray sampling,
which is accounted for during rebinning. Once the data are
organized into 2D parallel-ray projections, the geometry is
equivalent to that of 3D PET after rebinning and the already
established filters can be used. Therefore, we focus much of
our investigation on the rebinning algorithm and only briefly
review the filter design. Gridding is used to rebin the data.
We show that errors can arise due to the location of acquired
data samples relative to the output grid point, and we present
a new method for reducing this gridding error. The paper
then investigates the image artifact, resolution, and noise per-
formance of the algorithm through simulations. Finally, al-
ternative reconstruction methods are briefly discussed.

II. SYSTEM DESCRIPTION

The basic system geometry is illustrated in Fig. 1. The
IGCT system consists of a large-area scanned x-ray source
mounted on a CT gantry opposite a smaller array of fast
photon-counting detectors. During an acquisition, the elec-
tron beam is electromagnetically steered over a transmission
target, dwelling behind each of an array of collimator holes
which limit the resulting x rays to those that illuminate the
detector area. For each source position, the entire detector
array is read out, creating a 2D divergent projection of a
fraction of the field of view. The scanning of the source

FIG. 1. Proposed IGCT geometry shown with the x-ray beam at one position
in the source array.
positions is fast relative to the gantry rotation.
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III. RECONSTRUCTION ALGORITHM

A. Rebinning

The goal of the rebinning algorithm is to estimate, from
the rays in the IGCT geometry, a full set of 2D parallel-ray
projections. The parallel-ray geometry is illustrated in Fig. 2.
We define the axis of rotation to be along the z axis, and axial
planes to be perpendicular to the axis of rotation. We assume
that a parallel-ray projection is formed by the set of rays
normal to a virtual planar detector. The rotation of the pro-
jection about the axis of rotation �i.e., view angle�, is defined
as �, while the rotation from the axis of rotation �i.e., colati-
tude or tilt angle� is defined as �. Parameters u and � repre-
sent the local coordinates within each projection �i.e., where
a ray falls on the detector�. For all projections, the u axis lies
within an axial plane.

These four parameters, �, �, u, and �, can be calculated
for each ray in the IGCT geometry. We define � to be the
azimuthal angle of a ray, �i.e., the angle about the z axis in
the absence of gantry rotation�. The parameters are illus-
trated in the context of the IGCT geometry in Fig. 3. A ray
with � equal to zero and � equal to � /2 is parallel to the x
axis, and a ray with � equal to zero is parallel to the z axis.

FIG. 2. 2D parallel-ray geometry to which the IGCT data is rebinned is
illustrated using a virtual detector. � is the projection view angle, � is the
colatitude angle, and u and � are the coordinates within the projection. For
comparison, two virtual detectors are shown, one with � equal to � /2 and
one with a smaller value of �.

FIG. 3. Four geometry parameters, �, �, u, and �, shown for a ray in the

IGCT geometry where � is the azimuthal angle.
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The parameters depend on the 3D locations of the source
and detector element that define the ray and can be calculated
using the following equations. The coordinates �sx ,sy ,sz� de-
fine the location of the source spot before gantry rotation,
where −sx is the source-to-isocenter distance �SID�. Simi-
larly, each detector has coordinates �dx ,dy ,dz� before gantry
rotation, where dx is the detector-to-isocenter distance �DID�.
Parameters �, �, u, and � are independent of the gantry ro-
tation and are calculated using the coordinates of the unro-
tated source and detector. Parameters � and u can be calcu-
lated by considering the projection of the ray onto the x-y
plane.

� = arctan� sy − dy

dx − sx
� , �1�

u = dy · cos��� + dx · sin��� . �2�

The total view angle � depends both on � and the gantry
rotation angle �gantry.

� = � + �gantry. �3�

The parameters � and � can be calculated by considering the
plane defined by the ray and the source column from which
the ray originates.

� =
�

2
− arctan� sz − dz

��sx − dx�2 + �sy − dy�2� , �4�

� = dz · sin��� + �dx · cos��� − dy · sin����cos��� . �5�

In this formulation, the distance of the ray to isocenter is
parametrized by the two perpendicular components u and �,
which are equivalent to the parallel-ray detector coordinates
shown in Fig. 2.

The four parameters, �, �, u, and �, are sufficient for
reorganizing the IGCT data into 2D parallel-ray projections.
However, for a discrete implementation with regularly
sampled output 2D projections that are equally spaced in the
two angles, some form of interpolation must be used.

In order to better understand the rebinning algorithm, it is
helpful to visualize the data in projection space. For a 2D
reconstruction from 1D projections, such as those acquired
by conventional single slice CT systems, each ray is de-
scribed by two parameters, the rotation angle � and the ra-
dial distance to isocenter �. For these single slice CT sys-
tems, projection space is two dimensional with coordinate
axes � and �. Each ray in a 1D projection samples one point
in the two-dimensional projection space, and a 1D parallel-
ray projection, comprised of data at one � value and a range
of � values spanning the field of view, samples a horizontal
line in projection space.

In the IGCT geometry, each ray is described by two
angles and two distances and is represented in a 4D projec-
tion space. Each ray samples one point in the 4D projection
space, but the sample points from all acquired rays are not
uniformly distributed. Rebinning the data to 2D parallel-ray
projections is equivalent to interpolating the nonuniform

samples onto a 4D Cartesian grid in projection space. The
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problem of resampling nonuniform data onto a uniform grid
arises in many different fields and has been the subject of
much work. We are using a gridding approach11 in which
each acquired data point contributes to all output grid points
within some neighborhood. In this implementation, a bin
width is selected for each of the four projection space param-
eters, defining the 4D neighborhood of measured data points
used to estimate each grid point. Each data point in this bin is
weighted based on its 4D location with respect to the grid
point and a chosen 4D kernel shape. The interpolated value
at the grid point is the sum of the weighted data points,
normalized by the sum of weights for that point.

The important design parameters for the rebinning algo-
rithm are the bin widths, kernel shape, and output grid sam-
pling density. For application in magnetic resonance �MR�
reconstruction, the effect of each of these parameters on the
gridded data has been described in detail.12 Although most
medical imaging applications, including MR, apply gridding
in frequency space, the analysis in Ref. 12 is based on gen-
eral signal processing theory and is relevant for other appli-
cations. When gridding in projection space, special care must
be taken to properly combine rays that are physically close
yet separated in angle. For example, rays near �=2� must
be considered when gridding data at �=0.

B. Rebinning error correction

One important step in the gridding algorithm is compen-
sation for the nonuniform and/or asymmetric location of the
acquired data points. That is, the estimated grid point value
should not be biased by the number or the distribution of
measured data points used in the estimation. Errors can occur
if the sampling is not accounted for properly.

The simplest method for performing this correction is
post-compensation, where the value at the output grid point
is normalized by the total sum of the deposited weights. Af-
ter this normalization, and considering gridding of a 1D
function f�x�, the gridded value at a point xo is

f̂�xo� = �
i

kif�xi� , �6�

where f�xi� is the ith input sample and ki is the normalized
kernel value for that sample. This method corrects for the
number of data points that contribute to a grid point and
gives an unbiased estimate if the data are locally constant.
That is, if f�xi�= f�xo� for all i, Eq. �6� gives the correct
answer since the sum of the ki is one. However, consider the
particular but relatively simple case where the input function
is linear with slope G.

f�x� = f�xo� + G�x − xo� . �7�

Straight-forward gridding yields

f̂�xo� = �
i

ki�f�xo� + G�xi − xo�� , �8�
which reduces to
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f̂�xo� = f�xo� + G�
i

ki�xi − xo� . �9�

Since the desired value is f�xo�, the second term on the right-
hand side of Eq. �9� is the gridding error �.

� = G�
i

ki�xi − xo� . �10�

If the kernel is even and the samples are symmetric about xo,
the error is zero. In general, though, there is an error propor-
tional to the slope of the input function. In our implementa-
tion, we are gridding the projection measurement data.
Therefore, it is the gradient of the projection of the object
that determines the amount of error in the gridded value.

In addition, we have found that the error caused by the
linear term and the asymmetric sampling can be coherent in
adjacent gridded projection angles, causing an artifact to ac-
cumulate in the image. This can be understood by consider-
ing the distribution of data points about a particular grid
point. If the data points are asymmetrically distributed in the
radial direction, the interpolated value at the grid point will
be biased in the direction with more samples. For example, if
the projection measurements are higher on the side with
more samples, the gridding output may overestimate the cor-
rect value. The asymmetric sampling will likely bias a grid
point at a nearby radial location in the opposite direction
�note that the gain of the gridding process is unity�. In our
system, each view samples data from a range of azimuthal
and radial positions. The radial sampling varies slowly with
azimuthal angle within each IGCT view, and repeats for each
gantry position. Since the overall trends of projections also
vary slowly with view angle, rebinned projections at nearby
azimuthal angles will contain similar errors. In other words,
the gridding error will vary rapidly in the radial direction and
slowly in the azimuthal direction, which is the type of error
to which CT is particularly sensitive.

A more sophisticated gridding approach preweights the
data by the inverse sampling density of the measurements.
That is, data from highly sampled regions are deemphasized
while data from sparsely sampled regions are emphasized by
the preweighting factors. For certain sampling patterns, such
as spiral sampling in MR, these density weights can be cal-
culated analytically.13 Several other approaches, including
computational and iterative methods, have been proposed to
determine the weights for arbitrary sampling patterns.14–16

While preweighting should reduce errors, we note that Eq.
�10� predicts residual errors even with uniform sampling
density.

The uniform resampling algorithm �URS�, which is opti-
mal in the minimum norm least square sense, and the block
uniform resampling algorithm �BURS�, a computationally
feasible locally optimal gridding algorithm, have also been
proposed.17 These algorithms indirectly incorporate the sam-
pling pattern when estimating the grid points by formulating
the gridding problem as a linear set of equations and using
least-squares methods to solve for the values at the grid

points. These methods are sometimes ill-conditioned and
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may be sensitive to noise or measurement errors. A regular-
ized version has also been proposed which provides stability
at the expense of accuracy.18

Most of the methods listed above were developed for
gridding in frequency space and are largely applied to MR
imaging. Gridding in projection space has slightly different
challenges.19 Due to the ramp filter in CT reconstruction,
errors that are high in frequency in the radial direction are
greatly amplified. Also, the dynamic range �the range of re-
constructed values divided by the noise level� of CT de-
mands a higher signal-to-artifact level compared to MR or
PET. For example, CT is sensitive to errors on the order of a
few Hounsfield units �HU�, where one HU is a change in
signal that is one tenth of one percent of the attenuation of
water, while the range of values may be 400% of the density
of water.

Therefore, we propose a new gridding correction that is
motivated by Eq. �10�. We note that if the sum in the error
term was zero, the grid point value would be correct �for this
case� regardless of the slope. We modify each kernel value ki

by an amount which depends on the distance between the
data point and grid point. We define the new kernel values,
k_newi as

k _ newi = ki + ��xi − xo� , �11�

and solve for the value of � such that the sum in Eq. �10�,
and therefore the error, equals zero.

0 = �
i

�ki + ��xi − xo���xi − xo� �12�

� =
− �i

ki�xi − xo�

�i
�xi − xo�2

. �13�

By using the kernel values defined in Eqs. �11� and �13�,
the zero and first-order terms of the projection data are esti-
mated correctly at the grid points. This local kernel correc-
tion strategy can be generalized to ensure that higher-order
terms are correctly estimated, but since we only use the data
in a small neighborhood about each grid point, the higher-
order terms should be small. In addition, the higher-order
terms are less likely to be similar in neighboring projections
and should not lead to the coherent errors.

Although the proposed correction does not explicitly
compute the measurement sampling density, the modified
kernel values in Eq. �11� can be thought of as compensating
for this as well as resymmetrizing the kernel based on the
distribution of data points. A post-compensation step to en-
sure that the total sum of weights at each grid point is one is
still required. The gridding correction can produce negative
kernel values which may cause the sum of the kernel values
at the grid point to be very small. This occurs when the
measured data points are clustered close together on one side
of the grid point. When the kernel value sum is very small,
the post-compensation step amplifies the contribution of

some data points and the noise. Therefore, a threshold is set
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on the sum of the corrected kernel values. If the sum is
below the threshold, the original kernel values are used.

This method can be easily extended to multiple dimen-
sions. In the case of 2D gridding, the locally linear function
is

f�x,y� = f�xo,yo� +
� f

�x
f�x − xo� +

� f

�y
f�y − yo� . �14�

The grid point value at �xo ,yo� estimated from data points at
�xi ,yi� is

f̂�xo,yo� = �
i

kif�xi,yi� , �15�

and the adjusted kernel values are defined by

k _ newi = ki + �x�xi − xo� + �y�yi − yo� , �16�

where �x and �y are determined by solving the following
equations:

�x�
i

�xi − xo�2 + �y�
i

�xi − xo��yi − yo�

= − � ki�xi − xo�

	�y�
i

�yi − yo�2 + �x�
i

�xi − xo��yi − yo�

= − � ki�yi − yo� . �17�

The solution in Eq. �17� is not well-defined when the
system of equations is ill-conditioned. This could be the case
in sparsely sampled regions where there is an insufficient
distribution of data points surrounding a grid point. This will
cause the calculated � values to be very large, which may
lead to unstable performance. A threshold on the allowed
size of � can be set, and for grid points for which this thresh-
old is exceeded, either the original kernel values can be used,
or the region size used to estimate the grid point can be
expanded.

For our geometry, the gridding correction is applied in
four dimensions, which requires solving a system of four
equations to ensure that the linear term is correctly esti-
mated.

C. Filtered backprojection

Once the data are organized into 2D parallel-ray projec-
tions, the central slice theorem can be used to design the
appropriate reconstruction filter. The theorem states that a 2D
parallel-ray projection of a 3D object samples the 3D Fourier
transform of the object along the plane that is perpendicular
to the projection direction and that passes through the origin.
Therefore the ensemble of parallel-ray projections sample
the Fourier transform of the object, with some areas of fre-
quency space sampled more than others.

The role of the reconstruction filters is to weight the fre-
quency content of each projection so that, when they are all
superimposed during backprojection, the 3D Fourier trans-

form of the object is properly reconstructed. One solution is
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to define the filter applied to each projection to be the inverse
of the density of measurements in frequency space on the
plane sampled by that projection.

An analytical expression for this filter, known as the
“Colsher” filter, has been previously derived8,10 and is stated
without proof below. The derivation assumes 2D parallel-ray
projections continuously and uniformly distributed between
� equal to zero and 2� and colatitude angle between �min

and � /2, where �min is the colatitude angle of the most ob-
lique projection. These assumptions are reasonable if the dis-
tance between adjacent projections is small in both angular
directions. The density of measurements, stated without
proof, is

D��k,
� =

M arcsin	 cos����
sin�
� 


�k cos��min�
, �18�

k = �ku
2 + k�

2, �19�


 = arcos� k�sin �

k
� , �20�

�� = max��min,
�

2
− 
� , �21�

where ku and k� are the coordinates of the 2D Fourier trans-
form of the projection and M is the total number of projec-
tions.

The 2D filter for a parallel-ray projection at a colatitude
angle � is then given by

G��ku,k�� =
W�k�

D��k,
�
, �22�

where W�k� is a window function used to control the impulse
response. Substituting the expression for D� the resulting 2D
filter is

G��ku,k�� =
�k cos��min�

M arcsin� cos����
sin�
� �

W�k� . �23�

As can be seen in Eq. �23�, the filter depends on the colati-
tude angle � but is the same for all view angles at that �.

The window function W�k� can be designed to recover
some of the resolution lost during the rebinning step. The
gridding algorithm convolves the input data with a 4D kernel
causing some apodization in frequency space. During the
filtering step, the Fourier transform is performed in two spa-
tial dimensions, u and �. Therefore, in these two dimensions,
the blurring due to gridding can be undone by incorporating
into the filter window the inverse of the Fourier transform of
the gridding kernel. The blurring in the two angular dimen-
sions cannot be reduced during the normal filtering step but
could be deapodized in a separate step prior to backprojec-
tion.

The filter in Eq. �23� is defined as a continuous function in

frequency space. Implementing the filter discretely can intro-
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duce low frequency artifacts in the reconstructed image due
to aliasing of the filter in image space.20 To reduce these
artifacts, the discrete filters are first oversampled in fre-
quency space, windowed in image space, and then trans-
formed back to frequency space.21 In this way the filter for
each colatitude angle is calculated as part of the preparation
for image reconstruction. During reconstruction, each 2D
parallel-ray projection is filtered with the 2D filter for the
appropriate � and backprojected into the 3D volume. We
used a pixel-driven backprojection with linear interpolation.

D. Projection truncation

Due to the finite longitudinal extent of the source and
detector, oblique rays do not encompass the entire field of
view, as illustrated in Fig. 4. Depending on the size of the
object, the rebinned 2D parallel-ray projections at these ob-
lique colatitude angles will be truncated and cannot be di-
rectly incorporated into the filtered backprojection algorithm.
One known method for dealing with these truncated projec-
tions performs an initial reconstruction from the complete
projections at �=� /2 and then uses reprojection to estimate
the missing rays.22 The completed set of projections can then
be used to reconstruct the 3D volume using the method de-
scribed above.

For the preliminary investigation of this algorithm, the
reprojection algorithm was not implemented. Instead, the
longitudinal FOV was reduced somewhat and only projec-
tions at colatitude angles that contain the entire object were
used to reconstruct the volume. Although this simplification
inefficiently uses the collected data and would suffer a large
SNR penalty in a real system, it is acceptable for the prelimi-
nary investigation of the integrity of the algorithm in the
absence of noise. When studying the noise performance of
the algorithm, projections from all colatitude angles were
used as will be described in Sec. IV D.

E. Noise considerations

The IGCT geometry contains cross-plane ray measure-
ments, and in order to provide suitable noise performance,
the reconstruction algorithm must use these rays efficiently,

FIG. 4. Profile of the source and detector illustrates that while the in-plane
rays span the entire longitudinal field of view, cross-plane rays at oblique
colatitude angles do not cover the entire object, leading to truncated parallel-
ray projections.
ideally as efficiently as the in-plane rays. To study this re-
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quirement we use the metric of photon utilization efficiency.
We distribute the same total number of photons to the IGCT
system and to a parallel-ray geometry that uses only in-plane
rays, where both systems have comparable resolution and
field of view, and compare the noise in the resulting images.

The noise in a reconstructed CT voxel depends on the
spatial resolution and the number of photons that passed
through the voxel and were detected as expressed in the fol-
lowing equation:23

�2 = A · �
j=1

m
1

Nj
, �24�

where Nj is the mean detected photon density that has passed
through the voxel in the jth projection, m is the number of
projections, and A is the integral of the reconstruction filter
squared. For parallel-ray reconstruction using only in-plane
rays, A can be expressed as

A =
�2

m2�
−�

� �
−�

�

ku
2�W�ku,k���2dkudk�, �25�

where ku and k� are the coordinates of the 2D Fourier trans-
form of the projection, and W is the window function, in our
case a radial Hanning window with frequency cutoff kc,

W�ku,k�� =
1

2
	1 + cos���ku

2 + k�
2

kc
�
 � ��ku

2 + k�
2

2kc
� . �26�

By combining Eqs. �24�, �25�, and �26�, and assuming that
the photon density N is the same for all projections, we can
calculate the photon density required to achieve a specified
noise variance.

N =

�2�
−�

� �
−�

�

ku
2�W��ku

2 + k�
2��2dkudk�

m�2 . �27�

From the photon density, which is defined as the number
of photons per unit area, the total number of photons in the
parallel-ray acquisition is

Ptotal = N · pixu · pix� · aread · m , �28�

where pixu and pix� are the detector dimensions in pixels,
and aread is the area of a detector element.

By distributing Ptotal photons to the IGCT geometry and
measuring the resulting noise, we can compare the IGCT
photon utilization efficiency to that of the in-plane parallel-
ray geometry. That is, we can examine whether the proposed
reconstruction algorithm uses the cross-plane rays as effec-
tively as the in-plane rays.

IV. SIMULATIONS

To test the reconstruction algorithm, projection data were
simulated for the IGCT geometry. The specifications of the
simulated system are summarized in Table I and are based on
hardware components developed by NexRay Inc. �Los Ga-
tos, CA�,24 but with SID and DID typical of a CT geometry

�but reversed�. At each gantry position data are collected
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from each of the 2000 source spots. We assumed the acqui-
sition of these data was instantaneous, i.e., no rotation during
source scanning. Sixty-three gantry positions over 2� were
determined necessary for sufficient sampling �note that each
view contributes to many 2D projections�.7 The source and
detector apertures were simulated by averaging data from
discrete subsources and subdetectors spanning the finite ap-
erture sizes.

The data were rebinned into a 2D parallel-ray geometry
using the parameters specified in Table II. While a thorough
optimization was not performed, the gridding parameters
were selected experimentally to provide acceptable perfor-
mance. The projection sampling was chosen to be
0.125 mm	0.125 mm, as using an oversampled grid im-
proves the gridding performance.12 For computational con-
venience, the number of rebinned views was 1008, which is
16 times the number of acquired views. By using this num-
ber of rebinned views, the distribution of measurements in
the 4D projection space repeats for every 16 grid points in
the � direction. The precorrection kernel weights were based
on a separable 4D Hanning window. The implemented kernel
widths provided a reasonable tradeoff between the resulting
blur and having sufficient measurements to estimate each
grid point. Further, the selected kernel widths were large
enough to ensure that all data points were used. The thresh-
old on the sum of the kernel values was initially set to zero
and was then increased until the related artifacts were quali-
tatively absent from the rebinned projections. The maximum
� value was chosen by examining a histogram of all calcu-
lated � values and choosing a reasonable threshold.

TABLE I. Simulated IGCT geometry.

Source dimensions �transverse	axial� 25	5 cm
Number of source locations �transverse	axial� 100	20
Detector dimensions �transverse	axial� 5.4	5.4 cm
Number of detector elements �transverse	axial� 48	48
SID 41 cm
DID 54 cm
FOV �transverse	axial� 12	5 cm
Number of views over 2� 63
Source focal spot width 0.06 cm
Detector aperture width 0.11 cm

TABLE II. Rebinning algorithm parameters.

2D projection sampling 0.0125	0.0125 cm
2D projection dimensions 352	960 pixels
Number of views over 2� 1008
Maximum colatitude angle � /2 rad
Minimum colatitude angle � /2 - 0.03 rad
Colatitude angle spacing 0.003 rad
Radial kernel width �u ,�� 0.07 cm
Angular kernel width �� ,�� 0.0126 rad
Minimum sum of corrected kernel values 0.6
Maximum � value 1000
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The reconstruction filter was apodized with a Hanning
window with a cutoff of 15 lp/cm unless otherwise noted.
For the rebinned IGCT data, the projections were further
windowed with the inverse of the Fourier transform of the
gridding kernel, as discussed in Sec. III C, unless otherwise
stated.

A. Water sphere

To measure the artifact level in the reconstructed volume,
data from the IGCT system and a comparable 2D parallel-ray
geometry were simulated through a water sphere located at
�1 cm, 1 cm, 0 cm� with a radius of 2 cm.

B. MTF

A 0.006 25 cm radius sphere at isocenter was simulated in
order to investigate the resolution effects of the reconstruc-
tion algorithm. The IGCT source focal spot and detector ap-
erture were modeled as part of the simulation. The modula-
tion transfer function �MTF� was calculated by
reconstructing a volume containing the sphere, projecting the
volume perpendicularly to the axis of rotation, and comput-
ing the 2D Fourier transform of the result. The horizontal
radial line through the transform gives the MTF in the in-
plane direction, while the vertical radial line gives the MTF
in the slice direction. The small sphere was also simulated
centered at �4, 4, 1 cm� to study the resolution away from the
center of the field of view.

For comparison, 2D parallel-ray projections of the geom-
etry in Table II were simulated for the 0.006 25 cm sphere at
isocenter. The parallel-ray data was simulated with focal spot
and detector aperture blurring equivalent to the IGCT geom-
etry so that any discrepancies in the MTF would be due to
the IGCT reconstruction algorithm. For all MTF studies, the
reconstruction filter was apodized with a Hanning window
with a 40 lp/cm cutoff.

C. Resolution phantom

To further investigate the algorithm performance for high
resolution objects, a phantom was simulated with 32 spheres
arranged into four resolution patterns with 0.7, 0.6, 0.5, and
0.4 mm spheres, respectively. For example, the 0.5 mm pat-
tern contained eight 0.5 mm diameter spheres centered at the
vertices of a 1 mm cube. Coronal and axial planes through
the patterns were reconstructed. The cutoff of the reconstruc-
tion filter Hanning window was 40 lp/cm.

D. Noise

The photon utilization efficiency of the IGCT reconstruc-
tion was examined by using Eq. �27� to calculate the photon
density required for an in-plane 2D parallel-ray geometry
with 15 lp/cm bandwidth to achieve a noise standard devia-
tion of 10 HU. The resulting photon density, 5
	106 photons/cm2, yields a total of 2.7	1011 photons for
the projection sampling described in Table II. Noisy IGCT
data and in-plane parallel-ray data were simulated using this

number of photons detected through air, and the central axial
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slice was reconstructed. The simulations were repeated five
times. The full range of colatitude angles, + /−0.03 rad, was
used in the IGCT reconstruction. Because the reprojection
algorithm was not implemented, some of the projections
were truncated. While the missing values were set to zero,
the truncation did not significantly affect the image noise
because the projections contained only noise and because
only the central axial slice was reconstructed. The recon-
structed noise standard deviation did not change significantly
when the missing projection data was replaced by values
with standard deviation equivalent to the measured rays.

V. RESULTS

A. Water sphere

The simulated IGCT water sphere data were first rebinned
into the 2D parallel-ray geometry specified in Table II. Fig-
ure 5 compares a profile through an ideal parallel-ray projec-
tion and an IGCT projection rebinned with and without the
gridding correction. In other words, this graph plots one line
in the 4D projection space. The region highlighted in Fig.
5�a� is expanded in Fig. 5�b� to more clearly show the grid-
ding errors. Figure 6 displays the difference between the
parallel-ray projection and the IGCT rebinned projection
with and without correction. The relationship between the
gridding error before correction and the gradient of the pro-

FIG. 5. Profile of a water sphere projection for the ideal parallel-ray geom-
etry and the IGCT geometry rebinned with and without the gridding correc-
tion. The highlighted region of �a� is expanded in �b�.
jection is demonstrated in Fig. 6, as the error is highest
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where the curve in Fig. 5�a� is steep. The error at the edge of
the object, still present in the corrected projection, is due to
the blurring incurred during rebinning.

The rebinned projections were then filtered and back-
projected to reconstruct the central axial plane of the sphere.
Figure 7�a� shows the reconstructed plane without the grid-
ding error correction. The image is displayed with a window
centered 0 HU, and a width of +/−1 HU, that is pixels val-
ues below −1 HU are black, and pixel values above 1 HU
are white. Figure 7�d� plots the central horizontal profile
through the image. The high frequency gridding artifacts
seen in the sphere are reduced to well below 1 HU by the
gridding correction, as shown in Figs. 7�b� and 7�e�. This
demonstrates that the artifacts in Fig. 7�a� are caused by the
asymmetric sampling around each output grid point, com-
bined with the locally non-constant projection values which
are relatively similar in adjacent views. With the correction
up to linear terms, the IGCT reconstruction is comparable to
that from direct parallel-ray data, shown in Figs. 7�c� and
7�f�. Although the gridding errors displayed in Fig. 7 are
relatively small, on the order of 1–2 HU, the gridding error
is proportional to the gradient of the projection, and the ob-
ject simulated in this experiment is by no means the worst
case. Without the gridding correction, significant artifacts
will result for more challenging objects.

Figure 8 compares the central coronal plane of the sphere
simulated by both the IGCT and parallel-ray geometries. The

FIG. 6. Difference between the parallel-ray projection and �a� the IGCT
rebinned projection without gridding correction and �b� IGCT rebinned pro-
jection with correction.
gridding correction has been applied in the IGCT reconstruc-
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tion. The images are displayed at two different windows to
show artifacts in both air and water, and the central horizon-
tal profile is plotted for each reconstruction. The IGCT image
contains more prominent view aliasing artifacts. However,
these artifacts are small enough to be acceptable. Other than
this difference, the two reconstructions have comparable im-

FIG. 7. Reconstructed central axial plane of the off-center water sphere for �a
gridding correction, and �c� the parallel-ray simulation. All images are win
image is plotted for �d� the IGCT simulation without gridding correction, �e�
age quality.
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In the IGCT reconstruction, only rebinned parallel-ray
projections containing the complete object were used. That
is, only seven of the possible 21 colatitude angles were used,
while the ideal parallel-ray projections were simulated at all
21 colatitude angles. Therefore the results of the IGCT simu-
lations verify the integrity of the rebinning algorithm and the

IGCT simulation without gridding correction, �b� the IGCT simulation with
d to a level of 0 HU +/−1 HU. The central horizontal profile through the
CT simulation with gridding correction, and �f� the parallel-ray simulation.
� the
dowe
integrity of the filtered backprojection for small colatitude
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angles, while the results of the parallel-ray simulations verify
that more oblique projections are handled properly by the
filtered backprojection and do not introduce artifacts.

For efficient noise and dose performance in a real IGCT
system, the reprojection algorithm would be implemented to
utilize data from all colatitude angles.

B. MTF

The MTF was calculated for the IGCT and parallel-ray
geometries, both reconstructed with a Hanning windowed
reconstruction filter. IGCT reconstructions were made with
and without the deapodization described in Sec. III C and
with and without the gridding correction. Since the object is
small, 21 colatitude angles were used in the IGCT simula-
tion. Only in-plane rays were used in the direct parallel-ray
simulation. Figure 9 compares the resulting MTF curves.
Both the in-plane and slice MTFs are displayed for the IGCT
geometry. As can be seen, while the rebinning algorithm
does introduce some blurring, the resolution can be largely
recovered by using the deapodization window during filtered
backprojection. The slight difference between the in-plane
and slice MTF is likely due to discretization errors. The 10%
value of the MTF is at 16 lp/cm. Even higher spatial reso-
lution is possible if the Hanning window is omitted or re-
placed with a function with higher amplitude at high spatial
frequencies. Without the Hanning window, the modulation at
16 lp/cm is expected to have been 15%.

Figure 10 compares the in-plane MTF of the IGCT system
with and without the gridding error correction, verifying that
the correction does not degrade the resolution.

Figure 11 shows the in-plane and slice MTF toward the
edge of the in-plane field of view, compared to the in-plane

FIG. 8. Reconstructed central coronal plane of the off-center water sphere fo
and �d� are windowed to 0 HU +/−1 HU, and images �b� and �e� are windo
shown �c� for the IGCT reconstruction and �f� for the parallel-ray reconstru
MTF at isocenter. The slight degradation seen in the in-plane
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MTF is most likely due to the azimuthal blurring introduced
during rebinning. If the cross-plane rays included in this re-
construction were approximated as in-plane rays, as is done
in single-slice rebinning,25 the response at the edge of the
12-cm FOV would span more than 3 mm in the slice direc-
tion. In the IGCT reconstruction, the slice MTF is preserved
as the impulse moves off center, indicating that the gridding
algorithm properly incorporates the oblique rays.

C. Resolution phantom

Figure 12 displays an axial and coronal plane through the
resolution patterns, and in both images the 0.4 mm spheres
can be resolved. Projections at all 21 colatitude angles were
used in this reconstruction. The reduced modulation of the

�b� the IGCT simulation, and �d�,�e� the parallel-ray simulation. Images �a�
to −1000 HU +/−1 HU. The central horizontal profile through the image is
.

FIG. 9. Plot comparing the MTF curves for the IGCT and parallel-ray simu-
lations. The IGCT data was reconstructed both with and without the grid-
ding kernel deapodization window. For the IGCT data with deapodization
r �a�,
wed
ction
window, both in-plane and slice MTF curves are displayed.
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smaller sphere patterns is consistent with the MTF curve.
Again, a different filter window function could be used to
preserve more uniform response across all frequencies.

D. Noise

Compared to the predicted 10 HU standard deviation, the
noise standard deviation of the in-plane parallel-ray recon-
structions, averaged across the five simulations, was 9.98
+ /−0.06 HU, while the noise in the IGCT reconstruction
was 7.69+ /−0.05 HU before deapodization, and 9.09+ /
−0.05 HU after deapodization. The slightly lower noise in
the IGCT images, even after apodization, may be caused by
residual gridding blur. When only in-plane rays are used in
the IGCT reconstruction, the resulting noise after deapodiza-
tion was 19.54+ /−0.02 HU, thereby demonstrating the ad-
vantage of incorporating the cross-plane rays. The results of
the noise investigation show that the proposed reconstruction
algorithm efficiently uses the cross-plane rays and can pro-
vide noise performance similar to a comparable in-plane
parallel-ray geometry when given the same number of pho-
tons.

FIG. 10. Comparison of the in-plane MTF curves for the IGCT system with
and without the gridding correction.

FIG. 11. Comparison of the MTF curves at isocenter and toward the edge of

the field of view �4, 4, 1 cm�.
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VI. DISCUSSION AND CONCLUSIONS

The results presented in this paper demonstrate acceptable
performance of the 3D filtered backprojection algorithm pro-
posed for the IGCT geometry. This reconstruction method is
one of several possible approaches for the IGCT data. One
alternative is Fourier rebinning �FORE�.26,27 These algo-
rithms estimate the in-plane data from the cross-plane data,
thereby requiring only a 2D filtered backprojection. Another
advantage of these methods is that they avoid the data trun-
cation problem and do not require the time consuming re-
projection step. The FORE algorithm has been applied to
PET data with much success.26–31 An exact Fourier rebinning
algorithm, FORE-J, which also avoids the reprojection step
has been proposed.27 These Fourier rebinning algorithms are
very promising and their implementation for the IGCT ge-
ometry would be interesting future work, as would the inves-
tigation of iterative reconstruction algorithms.

Our work shows that the use of a gridding method can
introduce errors when the sampling pattern surrounding each
output point is asymmetric and that these errors are signifi-
cant in rebinning for CT reconstruction. We developed a cor-
rection method that effectively reduces the errors associated
with gridding. We believe this method is new and that it may
be useful in other applications such as non-Cartesian MR
imaging. With this correction, we demonstrated that high
quality images, relatively free of artifacts and additional
blurring, can be produced from IGCT data. The noise inves-
tigation demonstrates that the proposed reconstruction algo-
rithm uses the cross-plane rays as efficiently as the in-plane
rays and provides noise comparable to an in-plane parallel-
ray geometry when both systems use the same number of
photons. The simulations presented in this paper further pre-
dict that an isotropic resolution of 0.4 mm can be achieved
using realizable source and detector components and the pro-
posed algorithm. Although much work remains to fully in-
vestigate the feasibility of the IGCT system, the encouraging
performance of the reconstruction algorithm further supports
the potential for high quality volumetric scanning free from
cone-beam artifacts using the IGCT geometry.
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